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FOREWORD

The Statistical Reporting Service (SRS) has been engaged for
many years in the training of agricultural statisticians from around

the world. Most of these participants come under the support of the

Agency for International Development (AID) training programs; however,

many also come under sponsorship of the Food and Agriculture Organization
into the International Statistical Programs Center of the Bureau of the
Census, with which SRS is cooperating.

This treatise was developed by the SRS with the cooperation of
AID and the Center, in an effort to provide improved materials for
teaching and reference in the area of agricultural statistics, not
only for foreign students but also for development of staff working

for these agencies.

HARRY C. TRELOGAN
Administrator
Statistical Reporting Service

Washington, D. C. September 1974



PREFACE

The author has felt that applied courses in sampling should give more
attention to elementary theory of expected values of a random variable.
The theory pertaining to a random variable and to functions of random
variables is the foundation for probability sampling. Interpretations
of the accuracy of estimates from probability sample surveys are predicated
on, among other things, the theory of expected values.

There are many students with career interests in surveys and the
application of probability sampling who have very limited backgrounds in
mathematics and statistics. Training in sampling should go beyond simply
learning about sample designs in a descriptive manner. The foundations
in mathematics and probability should be included. It can (1) add much
to the breadth of understanding of bias, random sampling error, components
of error, and other technical concepts; (2) enhance one's ability to make
practical adaptations of sampling principals and correct use of formulas;
and (3) make communication with mathematical statisticians easier and more
meaningful.

This monograph is intended as a reference for the convenience of
students in sampling. It attempts to express relevant, introductory
mathematics and probability in the context of sample surveys. Although
some proofs are presented, the emphasis is more on exposition of mathe- -
matical language and concepts than on the mathematics per se and rigorous
proofs. Many problems are given as exercises so a student may test his
interpretation or understanding of the concepts. Most of the mathematics
is elementary. If a formula looks involved, it is probably because it

represents a long sequence of arithmetic operations.

ii
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Each chapter begins with very simple explanations and ends at a much
more advanced level. Most students with only high school algebra should
have no difficulty with the first parts of each chapter. Students with a

few courses in college mathematics and statistics might review the first

parts of each chapter and spend considerable time studying the latter parts.

In fact, some students might prefer to start with Chapter III and refer to
Chapters I and II only as needed.

Discussion of expected values of random variables, as in Chapter III,
was the original purpose of this monograph. Chapters I and II were added
as background for Chapter III. Chapter IV focuses attention on the dis-
tribution of an estimate which is the basis for comparing the accuracy
of alternative sampling plans as well as a basis for statements about the
accuracy of an estimate from a sample. The content of Chapter IV is
included in books on sampling, but it is important that students hear or
read more than one discussion of the distribution of an estimate, espe-
clally with reference to estimates from actual samplepsurveys.

The author's interest and experience in training has been primarily
with persons who had begun careers in agricultural surveys. I appreclate
the opportunity, which the Statistical Reporting Service has provided, to

prepare this monograph.

Earl E. Houseman
Statistician

1i4
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To work with large amounts of data, an appropriate system of notation
is needed. The notation must identify data by individual elements, and
provide meaningful mathematical expressions for a wide variety of summaries
from individual data. This chapter describes notation and introduces
summation algebra, primarily with reference to data from census and sample
surveys. The purpose is to acquaint students with notation and summation
rather than to present statistical concepts. Initially some of the expres-
sions might seem complex or abstract, but nothing more than sequences of
operations involving addition, subtraction, multiplication, and division
is involved. Exercises are included so a student may test his interpreta-
tion of different mathematical expressions. Algebraic'manipulatiOns are
also discussed and some algebraic exercises are included. To a consider-
able degree, this chapter could be regarded as a manual of exercises for
students who are interested in sampling but are not fully familiar with
the summation symbol, L. Familiarity with -the mathematical language will
make the study of sampling much easier.
1.2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element'" will be used in this monograph as a general expression for
a unit that a measurement pertains to. An element might be a farm, a per-
son, a school, a stalk of corn. or an animal. Such units are sometimes
called units of observation or reporting units. Generally, there are
several characteristics or items of information about an element that one

might be interested in.



"Measurement' or 'value'" will be used as general terms for the
numerical value of a specified characteristic for an element. This
includes assigned values. For example, the element might be a farm and
the characteristic could be whether wheat is being grown or is not being
grown on a farm. A value of "1" could be assigned to a farm growing wheat
and a value of "0" to a farm not growing wheat. Thus, the '"measurement'
or "value" for a farm growing wheat would be "1" and for a farm not grow-
ing wheat the value would be "0."

Typically, a set of measurements of N elements will be expressed as
follows: Xl, X2,...,XN where X refers to the characteristic that is
measured and the index (subscript) to the various elements of the popula-
tion (or set). For example, if there are N persons and the characteristic

X is a person's height, then X. 1s the height of the first person, etc.

1

To refer to any one of elements, not a specific element, a subscript "i"
is used. Thus, Xi (read X sub i)‘means the value of X for any one of the

N elements. A common expression would be "Xi is the value of X for the

th

i element."

The Greek letter I (capital sigma) is generally used to indicate a
sum. When found in an equation, it means '"the sum of." For example,

N
Z X, represents the sum of all values of X from X, to XN; that is,
{=1 i 1

N
L X, =X +X +...+ XN. The lower and upper limits of the index of
=1 i 1 2

summation are shown below and above the summation sign. For example, to

20

specify the sum of X for elements 11 thru 20 one would write I Xi.
i=11



You might also see notation such as "IX, where i = 1, 2,..., N" which

i

indicates there are N eléments (or values) in the set indexed by serial

numbers 1 thru N, or for part of a set you might see'"IX, where i = 11,

i

12,..., 20." Generally the index of summation starts with 1; so vou will

N

often see a summation written as ZXi. That is, only the upper limit of
i

the summation is shown and it is understood that the summation begins with
i=1. Alternatively, when the set of values being summed is clearly under-
stood, the lower and upper limits might not be shown. Thus, it is under-

stood that ZXi or EXi is the sum of X over all values of the set under
i

consideration. Sometimes a writer will even drop the subscript and use
X for the sum of all values of X. Usually the simplest notation that is
adequate for the purpose is adopted. 1In this monograph, there will be
some deliberate variation in notation to familiarize students with various
representations of data.
An average is usually indicated by a "bar" over the symbol. For
example, X (read "X bar," or sometimes "bar X") means the average value of
N
X

1=1 1
N

mation makes it clear that the sum is being divided by the number of elements
IX

and X is the average of all elements. However, < would also be inter-

X, Thus, X = . In this case,showing the upper limit, N, of the sum-

preted as the average of all values of X unless there is an indication to
the contrary.

Do not try to study mathematics without pencil and paper. Whenever

the shorthand is not clear, try writing it out in long form. This will

often reduce any ambiguity and save time.



(1)

(2)

(3)

(4)

(5)

(6)

7N

(8)

9

(10)

(11)

(12)

(13)

Here are some examples of mathematical shorthand:

Sum of the reciprocals of X

Sum of the differences between

Xi and ‘a constant, C

Sum of the deviations of Xi
from the average of X

Sum of the absolute values &f
the differences between X

and X. (Absolute value,
indicated by the vertical
lines, means the positive
value of the difference)

Sum of the squares of Xi

Sum of squares of the

deviations of X from X

Average of the squares of the
deviations of X from X

Sum of products of X and Y

Sum of quotients of X
divided by Y

Sum of X divided by the
sum of Y

Sum of the first N digits

N

B % - % +-% PN |
=15 % % Xy
N

r (xi-C)-(xl-C)+(x2-ci+...+(xN-C)
=1

N
i(Xi—X)-(Xl-X)+(x2-x)+...+(xN-X)

Z| X ~X] = X =X|+|X)~K] +. . o+ x-X].

2 + X2 + X2 +... X;

2
ZXi = X 2 3

[

z(xi-i)2 = (xl-i)2 .t (xN-)'()2

N
g (xi-i)2
i=1

=2 =2
. (XI-X) +- . ¢+(XN-X)
N N

N

iEIXiYi = X1Y1+X2Y2+...+XNYN

X
+—Y—%+...+)YLN-
1 2 N

'-<|><
[

[
~<|H><

ZXi 3 X1+X2+...+ XN
ZYi Y1+Y +o.0F YN

2
N
Li=14243+...+4 N
i=1
N

iElixi = Xl+2X2+3X3+...+ NXN

6
I (-1)ix1
1=1

= =X HK,-X HK, ~X X



Exercigse 1.1. You are given a set of four elements having the

following values of X: Xl a 2, X2 3" 5, X4 = 7. To test your

understanding of the summation notation, compute the values of the follow-

=0, X

ing algebraic expressions:

Expression Answer
4
(1) I (X+4) 30
- 1=1
) (2 r2(x,-1) 20
(3) 2z(xi-1) 20
(4)  z2x-1 27
X
= 1
(5) X= - 3.5
2
(6) Ixj 78
%) z(-xi)2 78
® (1x,)° 196
2
_ (9) E(X1 - Xi) 64
2
(10)  I(X)) - IX, 64
' 1D iR 45
(12) 2(-1)i(xi) 0
4 9
(13) I (xi -3 66
i=1
4 , 4
(14) & xi - I (3 66
iw] 1=1

Note: I (3) means find the sum of four 3's
i=]



Expression (Continued) Answer
(15) £(x; - X) 0
=2
(X, - X)
(16) —i 22
N-1 3
DIX% - 2%, X + %]
(17 R 22
N-1 3
zxi - N%2 29
(18) —x3 3

Definition 1.1. The variance of X where X = Xl, Xz,..., XN’ is

defined in one of two ways:

N
(X

2 _ =11
N

_i)z

or

g(x,—i)2
2 _i=1"

N-1

The reason for the two definitions will be explained in Chapter III.
The variance formulas provide measures of how much the values of X vary
(deviate) from the average. The square root of the variance of X is
called the standard deviation of X. The central role that the above
definitions of variance and standard deviation play in sampling theory
will. become apparent as you study sampling. The variance of an estimate
from a sample is one of the measures needed to judge the accuracy of the

estimate and to evaluate alternative sampling designs. Much of the algebra

and notation in this chapter is related to computation of variance. For
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complex sampling plans, variance formulas are complex. This chapter
should help make the mathematics used in sampling more readable and more
meaningful when it is encountered.

Definition 1.2. '"Population" is a statistical term that refers to

a set of elements from which a sample is selected ("'Universe' is often
used instead of "Population').

Some examples of populations are farms, retail stores, students,
households, manufacturers, and hospitals. A complete definition of a
population is a detailed specification of the elements that compose it.
Data to be collected also need to be defined. Problems of defining popu-
lations to be surveyed should receive much attention in courses on sampling.
From a defined population a sample of elements is selected, information
for each element in the sample is collected, and inferences from the sam-
ple are made about the population. Nearly all populations for sample
surveys are finite so the mathematics and discussion in this monograph
are limited to finite populations.

In the theory of sampling, it is important to distinguish pbetween
data for elements in a sample and data for elements in the entire popula-
tion. Many writers use uppercase letters when referring to the population
and lowercase letters when referring to a sample. Thus Xl,..., XN would
represent the values of some characteristic X for the N elements of the
population; and Xyseors X would represent the values of X in a sample of
n elements. The subscripts in Xyseees X simply index the different
elements in a sample and do not correspond to the subscripts in Xl,..., XN
which index the elements of the population, In other words, x, could be

i

any one of the Xi's. Thus,



N

i

N = X represents the population mean, and
n

i

p” = X represents a sample mean

In this chapter we will be using only uppercase letters, except for
constants and subscripts, because the major emphasis is on symbolic repre-
sentation of data for a set of elements and on algebra. For this purpose,
it is sufficient to start with data for a set of elements and not be
concerned with whether the data are for a sample of elements or for all
elements in a population.

The letters X, Y, and Z are often used to represent different charac-
teristics (variables) whereas the first letters of the alphabet are commonly
used as constants. There are no fixed rules regarding notation. .- For

example, four different variables or characteristics might be called X

1’
XZ’ X3, and XA' In that case Xli might be used to represent the ith value
of the variable Xl‘ Typically, writers adopt notation that is convenient

for their problems. It is not practical to completely standardize notation.

Exercise 1.2. 1In the list of expressions in Exercise 1.1 find the

variance of X, that is, find Sz. Suppose that X4 is 15 instead of 7. How

much is the variance of X changed? Answer: From 9§-to 44% .

Exercise 1.3. You are given four elements having the following values

of X and Y



Find the value of the following expressions:

Exgression Answer Exgression Answer
(1 XY, 107 (7) IX-IY, -6
2
(2) (X (EY) 280 (8) I(X-Y)) 74
= = 2 .2
(3) Z(X;=X) (YY) 37 (9) I(X;-Y)) -132
(4) IX,Y,-NXY 37 (10) IX2-Ly> -132
14 177
X
(5) =1+ 1.625 (11) [(X,-Y.)}> 36
Ny . 174
(6) I(X.-Y.) -6 (12) [zx,1%-12v.12  -204
11 i i

1.3 FREQUENCY DISTRIBUTIONS
Several elements in a set of N might have tlre same value for some

characteristic X. For example, many people have the same age. Let X

3
be a particular age and let Nj be the number of people in a population
K
(set) of N people who have the age X Then I N, = N where K 1is the

3" ju1 3

number of different ages found in the population. Also ZNij is the sum

IN X
of the ages of the N people in the population and —E%—i represents the
3

average age of the N people. A listing of Xj and Nj is called the

frequency distribution of X,since N, is the number of times (frequency)

3

that the age X, is found in the population.

3

On the other hand, one could let X, represent the age of the ith

i
individual in a population of N people. Notice that j was an index of age.

We are now using i as an index of individuals, and the average age would

X IN. X X
1 - _Ji_.__1
be written as N Note that ZNij ZXi and that R N The

3
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choice between these two symbolic representations of the age of people in
the population is a matter of convenience and nurpose.

Exercise 1l.4. Suppose there are 20 elements in a set (that is, N = 20)

and that the values of X for the 20.elements are: 4, 8, 3, 7, 8, 8,3, 3,
7, 2, 8, 4, 8, 8, 3, 7, 8, 10, 3, 8.
(1) List the values of Xj and Nj’ where j is an index of the
values 2, 3, 4, 7, 8, and 10. This is the frequency
distribution of X.
(2) What is K equal to?

Interpret and verify the following by making the calculations indicated:

N K
3) I X, = L N,X
ja1 1 j=1 i3
X IN. X
(4) ‘Tl - —dd .3
N IN
h|
rx, 07 N, (x,-%)
(5) - 1
N TN
R
1.4 ALGEBRA

In arithmetic and elementary algebra, the order of the numbers when
addition or multiplication is performed does not affect the results. The
familiar arithmetic laws when extended to algebra involving the summation
symbol lead to the following important rules or theorems:

Rule 1.1 Z(Xi—Yi+Zi) = ZXi-ZYi+XZi

or z(xli+x21+ +xKi = ):‘{ +zx + +I:)(Ki

Rule 1.2 Zaxi = aZXi where a is a constant

Rule 1.3 Z(Xi+b) = ZX1+Nb where b is constant
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If it is not obvious that the above equations are correct, write both
sides of each equation as series and note that the difference between the
two sides is a matter of the order in which the summation (arithmetic) is
performed. Note that the use of parentheses in Rule 1.3 means that b is
contained in the series N times. That'is,

N
iEl(Xi+b) = (X1+b)+(X2+b)+. . .+(XN+b)

= (X1+X2+...+XN) + Nb

On the basis of Rule 1.1, we can write

N N N
I (Xi+b) = I Xi + b
i=]1 i=1 i=1
N
The expression I b means'sum the value of b,which occurs N times.” Therefore,
i=1
N
Z b = Nb.
i=1
N ,
Notice that if the expression had been I Xi+b,then b is an amount to add
i
N
to the sum, I X, .
i
i
- N - -N -
In many equations X will appear; for example, I xxi or L (Xi-x).
i i
Since X is constant with regard to the summation, zixi - izxi . Thus,
in
I(X,-X) = I X,-EX = IX, - NX. By definition,X = 1_ | Therefore,
i i i N
i i i i
NX = IX, and I(X,-X) = 0.
i i
i i
N 2
To work with an expression like Z(Xi+b) we must square the quantity
i

in parentheses before summing. Thus,



2 2 2
Z(Xi +b)" = Z(Xi + Zin + b7)

i
= IX

= IX

Heo M N

+ ZZin + sz

+ ZbEXi + sz

12

Rule 1

Rules 2 and 3

Verify this result by using series notation. Start with (Xl+b)2+...+(XN+b)2.

It is very important that the ordinary rules of algebra pertaining to

the use of parentheses be observed.

Students frequently make errors

because inadequate attention is given to the placement of parentheses or

to the interpretation of parentheses.

Until you become familiar with the

above rules, practice translating shorthand to series and series to short-

hand. Study the following examples carefully:

(1)

(2)
3)

(4)

(5)

(6)

@)

2 2
LX)" # (X))

2
Z—X_i_ s_z_x_i.
N NZ‘
2 2 2
D(XH4Y,)C # IX] + IV
2 2 2 2
Z(Xi + Yi) = in + ZYi

IXY, # (2X)) (TY))

2 2
Z(Xi—Yi) = in - ZZXi

N N
Za(X -b) # aX, - ab
g 1 g 1

Yi+ZY

The left-hand side is the sum of
the squares of Xi. The right-~hand
side is the square of the sum of Xi-
On the right the parentheses are
necessary. The left side could

have been written in .

Rule 1.2 applies.

A quantity in parentheses must be

squared before taking a sum.
Rule 1.1 applies
The left side is the sum of products.

The right side is the product of

sums,
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N N
(8) Za(xi-b) = aTX. - Nab
i
i i
N N
(9) a[IX,~b] = aIX, -ab
g 1 g1

2
(10) ZXi(Xi-Yi) ZXi - XXiYi

Exercise 1.5. Prove the following:

In all cases, assume { = 1, 2,..., N,

(1) Z(xi-i) = 0

XY Y
(2) z—lfl - g_l
X Xy
i
2
(3) NX .T—
N
(4) iEl(aXi-i-in-’-C) - aZXi+bZY1+NC

Note: Equations (5) and (6) should be (or become)
very familiar equations.
2 =2

S\ 2
(5) X(Xi—X) = ZXi - NX

. (6) Z(Xi-x)(Yi-Y) = ZXiYi-NXY

X

- 7 st +vp?

1 2
5 Z(X1+aYi)
a
(8) Let Y, = a+bX,, show that ¥ = a+bX

i i

and ZY: = Na(a+2bX) + b2 in

(9) Assume that Xi = ] for N, elements of a set and that X, = 0

1 i
for No of the elements. The total number of elements in the
N N
1 0
set is N N1+N0. Let No- P and N Q. Prove that
I(x,-%)?
———— = PQ .

N
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(10) z«(xi—d)2 - Z(Xi—i)z + N(X-d)%. Hint: Rewrite (xi-d)2

as [(Xi-i)+(i—d)]2. Recall from elementary algebra that

(a+b)2 = a2+2ab+b2 and think of (Xi-i) as a and of (X-d)

as b. For what value of d is Z(Xi—d)2 a minimum?

1.5 DOUBLE INDEXES AND SUMMATION
When there is more than one characteristic for a set of elements,
the different characteristics might be distinguished by using a different

letter for each or by an index. For example, Xi and Yi might represent

the number of acres of wheat planted and the number of acres of wheat

harvested on the ith farm. Or, X,, might be used where i is the index

i]
for the characteristics and j is the index for elements; that is, xij

would be the value of characteristic Xi for the jth element. However,

when data on each of several characteristics for a set of elements are
to be processed in the same way, it might not be necessary to use
notation that distinguishes the characteristics. Thus, one might say

x(xi—i)z
calculate B for all characteristics.

More than one index is needed when the elements are classified accord-

ing to more than one criterion. For example, Xij might represent the value

th

of characteristic X for the j farm in the ith county; or X might be

ik

the value of X for the k' household in the §T" block in the 1" city.

As another example, suppose the processing of data for farms involves

classification of farms by size and type. We might let Xijk
h

the value of characteristic X for the kt farm in the subset of farms

represent

classified as type j and size i. If Nij is the number of farms classified



N 15

1)
IV X
o ik

as type j and size i, then N~ iij is the average value of X for
ij :

the subset of farms classified as type j and size i.

There are two general kinds of classification--cross classification
and hierarchal or nested classification. Both kinds are often involved
in the same problem. However, we will discuss each separately. An
example of nested classification is farms within counties, counties within
States, and States within regions. Cross classification means that the
data can be arranged in two or more dimensions as illustrated in the next
section.
1.5.1 CROSS CLASSIFICATION

As a specific illustration of cross classification and summation with
two indexes, suppose we are working with the acreages of K crops on a set

of N farms. Let X,, represent the acreage of the ith crop on the jth farm

ij
where {1 = 1, 2,..., Kand j =1, 2,..., N. 1In this case, the data could

be arranged in a K by N matrix as follows:

f f Column (j) f .
o @ L
: D1 j NoL° :
f 1 f X11 . le o xlN i § le f
. i . X4 cen Xij . X1N . § Xij i
¢ Column : xil X Xi z xiN: PN Xi :
: total L i J i s ij J :
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N
The expression I X (or I X, ,) means the sum of the values of X,, for a
i i) j 1j ij

fixed value of i. Thus, with reference to the matrix, I Xij is the total
]

of the values of X in the ith row; or, with reference to the example about

farms and crop acreages, L Xi3 would be the total acreage on all farms of
i K
whatever the ith crop is. Similarly, I xij (or I xij) is the column total
i i
th th
for the j column, which in the example is the total for the j farm of

the acreages of the K crops under consideration. The sum of all values of
KN

X could be written as II X,, or II X, ..
11 13 13 13

Double summation means the sum of sums. Breaking a double sum into

parts can be an important aid to understanding it. Here are two examples:

KN N N N
(1) EX,, =L X , +ZIZX,, +...+LX (1.1)
g 4oy H A 3

With reference to the above matrix, Equation (1.1) exnresses the grand total

as the sum of row totals.

KN N N
(2) ii X j(Y j+a) = j j(Y +a) +...+ I ij(Y +a) (1.2)
C )
\'4
N
§ le(Y1j+a) = xll(Yll+a) +...+ XlN(Y +a)

In Cquations (1.1) and (1.2) the ‘double sum is written as the sum of K
partial sums, that is, one partial sum for each value of i.

Exercise 1.6. (a) Write an equation similar to Equation (1.1) that
expresses the grand total as the sum of column totals. (b) Involved in

Equation (1.2) are KN terms, Xi (Y +a) Wirite these terms in the form of

3

a matrix.
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The rules given in Section 1.4 also apply to double summation.

Thus,
KN KN KN
I X, (Y. +a) =8 X, Y,., +alfX,,. (1.3)
ij iyt ij 1j iy ij 1j ij

Study Equation (1.3) with reference to the matrix called for in Exercise
1.6(b). To fully understand Equation (1.3), you might need to write out
intermediate steps for getting from the left-hand side to the right-hand
side of the equation.

To simplify notation, a system of dot notation is commonly used, for

example:
§ Xij = Xi.
A
i? Xij =X

The dot in Xi. indicates that an index in addition to 1 is involved and

X, is interpreted as the sum of the values of X for a fixed value of 1.

Similarly, X is the sum of X for any fixed value of j, and X represents

*3

a sum over both indexes. As stated above, averages are indicated by use of

a bar. Thus X . 1s the average of X,, for a fixed value of i, namely

i ij
N
ot _
N = Xi. and X.. would represent the average of all values of Xij’
iZ Xij
namely-«%ﬁz*—.

Here is an example of how the dot notation can simplifyv an algebraic

expression. Suppose one wishes to refer to the sum of the squares of the

row totals in the above matrix. This would be written as Z(Xi )2. The sum

1
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2

of squares of the row means would be Z(ii~) . Without the dot notation the
i
N 2
K N 2 K inj
corresponding expressions would be Z(ZXi ) and Z iﬁ~— . It is very
1 5 1 1
KN 2
important that the parentheses be used correctly. For example, Z(ZXij) is
i
KN 2
not the same as ZZXij . Incidentally, what is the difference between the
ij

last two expressions?
Using the dot notation, the variance of the row means could be written

as follows:

K
I(X, X )2
= i
V(X)) = T (1.4)

where V stands for variance and V(S'(1 ) is an expression for the variance of
ii- + Without the dot notation, or something equivalent to it, a formula
for the variance of the row means would look much more complicated.

Exercise 1.7. Write an equation, like Equation (1.4), for the variance

of the column means.

Exercise 1.8. Given the following values of X

1]

.
ide

i P . :

. 1 ) 2 : 3 . 4
1o 8 11 9 14
2 10 13 11 14
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Find the value of the following algebraic expressions:

Expression Answer Expression Answer
N N_o_ o,
(1) X 42 (9) KI(X, -X ) 54
1j 3o T
i b
N KN - = g
X (10) ZIZ(X,.-X .-X, +X ) 6
2] i3 ey T e
(2) JF— 12 . 2
KN
- X
(3) Xs, 13.5 Pt ij
(11) ZIIX|,- —5 78
ij KN
(4) LX 4 45 ij
2
- K, | o
(5) IIX, 144 X ij
13 ij g 1- ij
) (12) - xR 18
(6) X, , 12
N % 2
KN - (13) Z(X1 —Xl’) 21
QIEDTCIS S E y 4
3
1j
KN - .2
K__ 5 (14) ZZ(Xi -Xi-) 60
(8) NI(R X ) 18 15 11
i

Illustration 1.1. To introduce another aspect of notation, refer to

the matrix on Page 15 and suppose that the values of X in row one are to
be multiplied by a, the values of X in row two by a,, etc. The matrix

would then be alxll .o alxlj ese a1x1N

aixil can aixij eee X o

ey e Ay e Ay

The general term can be written as aiXij because the index of a and the
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index 1 in Xij are the same. The total of all KN values of aixij is
KN

XZaiXij . Since a is constant with respect to summation involving j,
ij

N
we can place a; ahead of the summation symbol I . That is, ZZaiX11 =
j ij )
fa. IX,. .
i 1j ij
Exercise 1.9. Refer to the matrix of values of Xij in Exercise 1.8.
Assume that al = -1, a2 = 0, and a3 = 1.

Calculate:

1 ra.X, .
(1) Rt

a_Xi.
(2) I "jﬁFj'

ij
(3) ZZa,X? Answer :-296
13 i 13

Show algebraically that:

(4) Ifa.X,, = IX,,-IX
i3 1 1] 5 34 3 13

a. X
(5) zI A1 X -X
1j N 3. 1.

2 2 2
(6) ZZaiXij = §x3j—§x1j

Exercise 1.10. Study the following equation and if necessary write

the summations as series to be satisfied that the equation is correct:

KN
LZ(aX,.+bY,,) = alIX,, + bIIY,,
13 ij ij 1j ij 1] ij

Illustration 1.2. Suppose

Yij = Xij+ai+bj+c where 1 =1, 2,...,K and j = 1, 2,...,N
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The values of Y can be arranged in matrix format as follows:

ij

Yll = X11 + al+bl+c v e e s e e e e e YlN - XlN + al+bN+c

. .
.

. Yij = xij + ai+b +c

YKl = XKl + ak+bl+c e e« o e o s s . YKN - XKN + aK+bN+c

Notice that a; is a quantity that varies from row to row but is constant

within a row and that b, varies from column to column but is constant

3

within a column. Applying the rules regarding the summation symbols we

have
ZYij = E(Xij+ai+bj+c)
k| h|
= ixij + Nai + ib + Nc

iYij = i(Xij+ai+bj+c)

= X, ., + Za, + Kb,#c

P J
LZY,, = LI(X, .,+a,+b +c)
13 ij 1 ij 1)

= TIX,, + NZa, + KIb, + KNc
ij 1] i 1 3 J

Illustration 1.3. We have noted that Z(XiYi) does not equal

(in)(EYi). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

ZEXin = (in)(ZYj) where i = 1, 2,...,K and § = 1, 2,...,N. This becomes
ij 1 i

clear if we write the terms of ZIX,Y, in matrix format as follows:

g3 11
Row Totals
XlY1 + Xle +. ..+ XlYN XlZYj
+ XZYl + XZYZ +,..+ XZYN XZZYj
XY P RY) bt XYy = IEKGY, XI¥ g
ij
ZXiZYj
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The sum of the terms in each row is shown at the right. The sum of these
Y, +...+ X LY, = .+ vY = F( LY 0
row totals is XIZ 3 KK ; Yk) i ne could

get the same final result by adding the columns first. Verv often inter-

mediate summations are of primary interest.

Exercise 1.11. Verify that ZZXin = (ZXi)(ZYj) using the values of
1]

X and Y in Exercise 1.3. 1In Exercise 1.3 the subscript of X and the sub-

script of Y were the same index. In the expression LIZX,Y, that is no longer

ij =
the case.
Exercise 1.12. Prove the following:
KN K 2 N 2 K N N 2
+ + +
(1) ZE(aiXi b ) .ai ?Xij 2§ai ;bjxij K);bj
ij 1 J 1 ] J
KN 2 K N 2 K 2
(2) EZa,(Xi ,') = Zai ZXi, - NZaiX
ig +oH 7 it gt i
KN _ _ K N Ko
- - = fa, L - NI ¢
(3) i?ai(xij Xi-)(Yij Yi-) iai jxinij ’\IiaiXi.\i

1.5.2 HIERARCHAL OR NESTED CLASSIFICATION
A double index does not necessarily imply that a meaningful cross
classification of the data can be made. For example, X11 mipght represent
.th , _th . .
the value of X for the j farm in the 1 county. In this case, j simply
identifies a farm within a county. There is no correspondence, for example,
between farm number 5 in one county and farm number 5 in another. In fact

the total number of farms varies from county to countv. Suppose there are

K counties and N1 farms in the ith county. The total of X for the ith
Ni K

county could be expressed as Xi- = I Xij . In the present case inj is
j i

KN,

meaningless. The total of all values of X is ZZIXij
ij
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When the classification is nested, the order of the subscripts
(indexes) and the order of the summation symbols from left to right should
be from the highest to lowest order of classification. Thus in the above
example the index for farms was on the right and the summation symbol

KN

involving this index is also on the right. 1In the expression LI Xij’
ij

summation with respect to i cannot take place before summation with regard
to j. On the other hand, when the classification is cross classification
the summations can be performed in either order.

In the example of K counties and N, farms in the ith county, and in

i

similar examples, you may think of the data as being arranged in rows (or

columns) :

X110 X990 oe0 s Xml

X21, X22, e X2N2

.

Xerr Kkae oo K

K

Here are two double sums taken apart for inspection:

KN

N N
(1) i, -i,,)z = sl(x, .-% _)2 +...t zK(xK_—i )2 (1.5)
i. lj IJ . J .o
h| h| h|
N
1 = 2 = 2 - 2
z (le'x--) (XX 07+t (X -XD)
i 1
Equation (1.5) is the sum of squares of the deviations, (Xij-i")’ of all
K
values of Xij from the overall mean. There are ZNi values of Xij’ and

i
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ZZiXij
X = i%————. If there was no interest in identifying the data by counties,
ZNi
1 N
a single index would be sufficient. Equation (1.5) would then be Z(Xi-i)z.
i
KN N N
i 3 2 1 = 2 K = 2
(2) 1z (Xij_xi-) L (le—xl') +...+ L (XKj—XK_) (1.6)
i3 b b
Ny _ = .2 = .2
v - = -2 « s -
3 (le xl.) (x1l ‘{1‘) +...+ ()(lNl xl_)
N = 2
With reference to Equation (1.6) do you recognize L (le—Xl.) ? It involves
3
only the subset of elements for which 1 = 1, namely Xll’ XlZ"" xlNl' Note
N
that il- is the average value of X in this subset. Hence, Zl(le—.}-(l.)2 is
3

the sum of the squares of the deviations of the X's in this subset from the
subset mean. The double sum is the sum of K terms and each of the K terms
is a sum of squares for a subset of X's, the index for the subsets being 1i.

Exercise 1.13. Let Xij represent the value of X for the jth farm in

the ith county. Also, let K be the number of counties and Ni be the number

of farms in the ith county. Suppose the values of X are as follows:

X, = 3 X, = 1 X 5 = 5
Xy, = b Xy, = 6
X1 =0 K32 = 3 X33 =1 Xyy = 2

Find the value of the following expressions:

Expression Answer
K
(1) ZNi 9



Expression (Continued) Answer
KNy
(2) 1z xij 27
ij
(3) X, and X_, 27
Ny
) X, =X 9
k|
(5) X, and X, 10
(6) Xl', Xz‘, and X3. 3
IN, X
i1
(7) 3
IN
K N K
(8) z(zixij)2 or X’ 245
ij i
= (2
(9) zz(xij-x,,) 36
ij
N
1 = 2
(10) (le’xl-) 8
3
N
i 2
1y 2K )
]
KNy - 2
(12) I (xi X)) 24
T
Ko . 2
(13) IN, (X ,-X,)) 12
i
N, 2 KN, 2
I'X NS ¢
kly M 1y 1
(14) =z - 12
. N ENj
K
2 2 12

(15) IN,X° -NX
i

8, 2, and 14 for i = 1, 2,

and 3 respectively

25
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Expressions (14) and (15) in Exercise 1.13 are symbolic representations

of the same thing.

By definition

Ni KNi K
I'X,, =X, ,IrX, =X  ,andIN =N
5.1 1 i 1
Substitution in (14) gives
K X2 fX2
A LA
i Ny N )
Xi' = X, = xi =2
Also by definition -—— = X, and — = X . Therefore — = N,X and
Ni i N .. Ni ii-
2, 9 R 2 .2
- - NX~ . Hence, by substitution, Equation (1.7) becomes ZNiXi_— NXT,
i
Exercise 1.14. Prove the following:
KNi K 2
(1) I Xi-xi’ = ZXi_
1§ Ty
KN, _ _
(2) X, (X,,-X, ) =20
A SR S S
K K
(3) IN, (X, -X )2 = IN, X% -N%?
ivvie . i1
i i
Note that this equates (13) and (15) in Exercise 1.13.
The proof is similar to the proof called for in part (5)
of Exercise 1.5.
KN K N K K
i 2 2 i 2 2
(4) f (a,X,.-b,) = Za, I'X,,-2ILa,b X . + IN.b
13 17ij 71 1 i j ij 1 i"ii 1 i1

1.6 THE SQUARE OF A SUM

In statistics, it is often necessary to work algebraically with the

square of a sum. For example,

(zxi)2 = (XX +...+xN)2

2 2 2
= oo X+ «eot oo
X1+X X + X +X Xl+ XN+XNX1+

2 12 2 72

(1.7)
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The terms in the square of the sum can be written in matrix form as

follows:
Xle X1X2 eee XlXj e XlXN
XZXl X2X2 .o X‘2Xj . XZXN
xixl XiX2 e Xin .o XiXN

Xle XNXZ .o XNXj e XNXN
The general term in this matrix is Xin where Xi and Xj come from the same

set of X's, namely, Xl,...,XN. Hence, 1 and j are indexes of the same set.
Note that the terms along the main diagonal are the squares of the value

of X and could be written as in . That is, on the main diagonal i = j

and Xin = Xixi = Xi . The remaining terms are all products of one value

of X with some other value of X. For these terms the indexes are never

equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as ZXin where 1 # j is used to express the fact that the summa-
i#j

tion includes all terms where i is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (ZXi)2 =
ZXZ + IX. X
i i ‘
14"

Notice the symmetry of terms above and below the main diagonal:

XlX2 = XZXI’X1X3 = X3X1 » etc. When symmetry like this occurs, instead of

X. . The sum of all

IX. X, you might see an equivalent expression 2% Xi 3

i#jl 3 i<j

terms above the main diagonal is = Xin . Owing to the symmetry, the sum
i<j
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of the terms below the main diagonal is the same. Therefore, L X X, =

i
14y *
2L X X, .
1<y 19
4 2 2
Exercise 1.15. Express the terms of [ IX, ] " = [X +X +X +X,]7 in
. ot 1727737
matrix format. Let Xl = 2, X2 = 0, X3 = 5, and X4 = 7. Compute the values
2
of ZXZ , 2L X, X, , and [IX ]2 . Show that [IX ]2 =X, + 21 XX, .
i i< i35 i i i 1< i3

An important result, which we will use in Chapter 3, follows from the
fact that

[zxi]2 =X+ I XX, (1.8)
i#j

Let X, = Y,-Y. Substituting (Yi-?) for X

1 1 in Equation 1.8 we have

i

~-. .2 -2 - -
[Z(Y,-¥)]" = Z(Y,-¥)" + T (Y.,-Y)(Y.-Y)
i i 141 i ]

We know that [Z(Yi—§)]2 = (O because Z(Yi—?) = 0. Therefore,

z(Yi-§)2 + L DD =0
i#j
It follows that I (Y.-¥)(Y.-¥) = —&(Y,-%)° (1.9)
R | i i
itj

Exercise 1.16. Consider
I (Yi—§)(Y,-?) = I (YiY, - ?Yi - YY, + ?2)
143 . 4y !

IYY. -YIY -YIY, + I 32

I T R A T X

Do you agree that I ?2 = N(N—l)?z? With reference to the matrix lavout,

i#j
Y appears N2 times but the specification is 1 # j so we do not want to

count the N times that Y~ is on the main diagonal. Try finding the values

of L Xi and I Xj and then show that
i#] 1#]
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AR AR N(N-1)¥2

1= 145 13

Hint: Refer to a matrix layout. In I Yi how many times does Yl appear?
i#4
Does Y, appear the same number of times?

2
1.7 SUMS OF SQUARES

For various reasons statisticians are interested in components of
variation, that is, measuring the amount of variation attributable to each
of more than one source. This involves computing sums of squares that
correspond to the different sources of variation that are of interest.

We will discuss a simple example of nested classification and a simple
example of cross classification.
1.7.1 NESTED CLASSIFICATION

To be somewhat specific, reference is made to the eﬁample of K counties

and Ni farms in the ith county. The sum of the squares of the deviationms

of Xij and i‘. can be divided into two parts as shown by the following

formula:
KN K KN
rrhex K, )7 = N & K )%+ antax K )7 (1.10)
1y 1 1 T

The quantity on the left-hand side of Equation (1.10) is called the
total sum of squares. In Exercise 1.13, Part (9), the total sum of squares
was 36.

The first quantity on the right-hand side of the equation involves the
squares of (ii.~i..),which are deviations of the class means from the over-
all mean. It is called the between class sum of squares or with reference
to the example the between county sum of squares. In Exercise 1.13,

Part (13), the between county sum of squares was computed. The answer was

12.
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The last term is called the within sum of sauares because it involves
deviations within the classes from the class means. It was presented
previously. See Equation (1.6) and the discussion pertaining to it. In
Exercise 1.13, the within class sum of squares was 24, which was calculated
in Part (12). Thus, from Exercise 1.13, we have the total sum of squares,
36, which equals the between, 12, plus the within, 24, This verifies
Equation (1.10).

The proof of Equation 1.10 is easy if one gets started correctly.
Write xij_i'° = (xij_ii-) +(ii--§-°)' This simple technique of adding and

subtracting X divides the deviation (X X,.) into two parts. The proof

i ij~
proceeds as follows:

KN

zzi(xi.—i“)2 = zz[(xi,—}'(i ) + (ii.—i..)]z

i J 1y

- II[(X, -%. )% 4 2(x,.-%. )X, X ) + (R, X))
ij ij "i- ij “i- 1s Te 1. S
2 2

= X 5 - X, =X X, -X
EE(Ry Ry )7+ 2000 oK O, SR+ IR XL)
ij 1j ij
KN L
Exercise 1.17. Show that LI (Xij—xi-)(xi-_x--) =0

ij
KN K

and that zzi(i -X )2 =T N.(X, -X )2
ij i. .. i i i P

Completion of Exercise 1.17 completes the proof.
Equation (1.10) is written in a form which displays its meaning rather
than in a form that is most useful for computational purposes. For computa-

tion purposes, the following relationships are commonly used:

KN
Total = zzi(xij—)‘(”)2 = zzxi -Ni?_

1j 1j



31

K
Between = IN (X, -X ) =1
i
i i
KN
Within = zzi(xij-' 2 . zzxij -IN, xf
i3 ij i

N KN

K ZiX11 zzixij

where N = IN, , X = i - » and X = £
i i i. Ni .o N

KN
Notice that the major part of arithmetic reduces to calculating ZZiXij s

13

IN 32 , and Ni?' . There are variations of this that one might use. For
2

i
(=

K <2
instead of ENiXi' .
i i

example, one could use

MR
7|

Exercise 1.18. Show that

KNy 2 2 =2

rotex, X, )% = 1oxd on X
13 T 19 134

A special case that is useful occurs when Ni = 2, The within sum of

squares becomes

K2 K

IZ(X ) = I[(X )+ X

X, )71
i ij { 11755, 12774

X, +X
Since Xi- = —llf—ig it is easy to show that

2

(X, ,-X, )

1
11753 = Kyp%yp)

2 1 2
1275307 = 7 Kyp%y))

Therefore the within sum of squares is

and (X

1
2

Ho~MR

(X41-X45)

which is a convenient form for computation.
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1.7.2 CROSS CLASSIFICATION
Reference is made to the matrix on Page 15 and to Exercise 1.8. The
total sum of squares can be divided into three parts as shown by the

following formula:

KN _ , K_ L, N_ . L,
DX, .-X )7 = NZ(X, -X )" + KI(X ,-X )" + ZZ(X,.-X, -X +X ) (1.11)
ij lj . i i .o 1 .j .e ij 1-1 . .j .o

Turn to Exercise 1.8 and find the total sum of squares and the three

parts. They are:

Sum of Squares

Total 78
Rows 18
Columns 54
Remainder 6

The three parts add to the total which verifies LEquation (1.11). 1Im
Exercise 1.8, the sum of squares called remainder was computed directly
(see Part (10) of Exercise 1.8). In practice, the remainder sum of squares
is usually obtained by subtracting the row and column sum of squares from
the total.

Again, the proof of Equation (1.11) is not difficult if one makes the

right start. In this case the deviation, (X -i..), is divided into three

ij
parts by adding and subtracting ii- and i'j as follows:
—- = X —_ + X —— —— __ X .
(Xij X ) (Xi- X ) (X-j X )+ (Xij Xi- X_j+X..) (1.12)

Exercise 1.19. Prove Equation (1.11) by squaring both sides of Equa-

tion (1.12) and then doing the summation. The proof is mostly a matter of

showing that the sums of the terms which are products (not squares) are zero.
KN— —

For example, showing that ZZ(Xi.—X .)(X
ij]

7% +X,. ) =0 .

-X
. ,j
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CHAPTER II. RANDOM VARIABLES AND PROBABILITY

2.1 RANDOM VARIABLES
The word ''random" has a wide variety of meanings. Its use in such

" "random variable," or '"random sample,'" however,

terms as ''random events,
implies a random process such that the probability of an event occurring

is known a priori. To select a random sample of elements from a population,
tables of random numbers are used. There are various ways of using such
tables to make a random selection so any given element will have a specified
probability of being selected.

The theory of probability sampling is founded on the concept of a
random variable which is a variable that, by chance, might equal any one
of a defined set of values. The value of a random variable on any partic-
ular occasion is determined by a random process'in such a way that the
chance (probability) of its being equal to any specified value in the set
is known. This is in accord with the definition of a probability sample
which states that every element of the population must have a known prob-
ability (greater than zero) of being selected. A primary purpose of this
chapter is to present an elementary, minimum introduction or review of
probability as background for the next chapter on expected values of a
random variable. This leads to a theoretical basis for sampling and for
evaluating the accuracy of estimates from a probability-sample survey.

In sampling theory, we usually start with an assumed population of N
elements and a measurement for each element of some characteristic X. A
typical mathematical representation of the N measurements or values is
h

X oo X

element. Associated with the ith element is a probability Pi’ which is the

,...,XN where X, is the value of the characteristic X for the it

i i

probability of obtaining it when one element is selected at random from the
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set of N. The Pi's will be called selection probabilities. If each

The P,'s need not be

element has an equal chance of selection, Pi = %. 4

equal, but we will specify that each P,>0. When referring to the probability

i
of X being equal to Xi we will use P(Xi) instead of Pi'

We need to be aware of a distinction between selection probability
and inclusion probability, the latter being the probability of an element
being included in a sample. In this chapter, much of the discussion is
oriented toward selection probabilities because of its relevance to finding

expected values of estimates from samples of various kinds.

Definition 2.1. A random variable is a variable that can equal any

value Xi’ in a defined set, with a probability P(Xi)'

When an element is selected at random from a ponulation and a measure-
ment of a characteristic of it is made, the value obtained is a random
variable. As we shall see later, if a sample of elements is selected at
random from a population, the sample average and other quantities calculated
from the sample are random variables.

Illustration 2.1. One of the most familiar examples of a random

variable is the number of dots that happen to be on the top side of a die
when it comes to rest after a toss. This also illustrates the concept of
probability that we are interested in; namely, the relative frequency with
which a particular autcome will occur in reference to a defined set of
possible outcomes. With a die there are six possible outcomes and we expect
each to occur with the same frequency, 1/6, assuming the die is tossed a
very large or infinite number of times. Implicit in a statement that each
side of a die has a probability of 1/6 of being the top side are some
assumptions about the phyvsical structure of the die and the '"randomness"

of the toss.
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The additive and multiplicative laws of probability can be stated in
several ways depending upon the context in which they are to be used. 1In
sampling, our interest is primarily in the outcome of one random selection
or of a series of random selections that yields a probability sample.
Hence, the rules or theorems for the addition or multiplication of prob-
abilities will be stated or discussed only in the context of probability
sampling.

2.2 ADDITION OF PROBABILITIES

Assume a population of N elements and a variable X which has a value

X, for the ith element. That is, we have a set of values of X, namely

i

Xl,...,Xi,...,XN. Let Pl""’Pi""’PN be a set of selection probabilities

where Pi is the probability of selecting the 1th element when a random

selection is made. We specify that each Pi must be greater than zero and

N

that EPi = 1. When an element is selected at random, the probability that
i

it is either the ith element or the jth element is P, + P,. This addition

i A
rule can be stated more generally. Let Ps be the sum of the selection
probabilities for the elements in a subset of the N elements. When a random
selection is made from the whole set, PS is the probability that the element
selected is from the subset and l—Ps is the probability that it is not from
the subset. With reference to the variable X, let P(Xi) represent the

probability that X equals Xi . Then P(Xi)+P(X ) represents the probability

3

that X equals either X, or Xj; and PS(X) could be used to represent the

i
probability that X is equal to one of the values in the subset.
Before adding (or subtracting) probabilities one should determine

whether the events are mutually exclusive and whether all possible events

have been accounted for. Consider two subsets of elements, subset A and
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subset B, of a population of N elements. Suppose one element is selected
at random. What is the probability that the selected element is a member
of either subset A or subset B? Let P(A) be the preobability that the
selected element is from subset A; that is, P(A) is the sum of the selec-
tion probabilities for elements in subset A. P(B) is defined similarly.

If the two subsets are mutually exclusive, which means that no element is
in both subsets, the probability that the element selected is from either
subset A or subset B is P(A) + P(B). If some elements are in both subsets,>
see Figure 2.1, then event A (which is the selected element being a member
of subset A) and event B (which is the selected element being a member of
subset B) are not mutuallv exclusive events. ILlements included in both
subsets are counted once in P(A) and once in P(B). Therefore, we must
subtract P(A,B) from P(A) + P(B) where P(A,B) is the sum of the probabilities
for the elements that belong to both subset A and subset B. Thus,

P(A or B) = P(A) + P(B) - P(A,B)

Figure 2.1

To summarize, the additive law of probability as used above could be
stated as follows: If A and B are subsets of a set of all possible outcomes

that could occur as a result of a random trial or selection, the probability
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that the outcome is in subset A or in subset B is equal to the probability
that the outcome is in A plus the probability that it is in B minus the
probability that it is in both A and B.

The additive law of probability extends without difficulty to three
or more subsets. Draw a figure like Figure 2.1 with three subsets so that
some points are common to all three subsets.. Observe that the additive
law extends to three subsets as follows:

P(A or B or C)=P(A)+P(B)+P(C)-P(A,B)-P(A,C)~P(B,C)+P(A,B,C)

As a case for further discussion purposes, assume a population of N
elements and two criteria for classification. A two-way classification of
the elements could be displayed in the format of Table 2.1.

Table 2.1--A two-way classification of N elements

) . X class f f
: Y class : : Total :
: : 1 N 3j .. s : :
: : P .o v on , I P :
booos NPy NygoPig YsP1s NpooPpl o
: i E Nil’Pil e Nij’Pij s Nis’pis f Ni-’Pi- E
: t i Ntl’Ptl e th’Ptj cee Nts’Pts f Nto’Pt-
: Total : N.1 N.j N.s : N,P=1 :

The columns represent a classification of the elements in terms of criterion

X; the rows represent a classification in terms of criterion Y; Nij is the

number of elements in X class j and Y class i; and P is the sum of the

ij
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selection probabilities for the elements in X class j and Y class i. Any
one of the N elements can be classified in one and only one of the t times
s cells.
Suppose one element from the population of N is selected. According
to the additive law of probability we can state that
ipij = P-j is the probability that the element selected is from
X class j, and

Pij = Pi° is the probabilitv that the element sclected is from

e 0

Y class i, where

Pij is the probability that the element selected is from

(belongs to both) X class j and Y class 1.
The probabilities P-j and Pi- are called marginal probabilities.
The probability that one randomly selected element is from X class
j or from Y-class 1 is P.j + Pi- - Pij' (The answer is not P'j + Pi- because

in P'j + Pi' there are Nij elements in X class j and Y class i that are

counted twice.)
Ni' N .
I1f the probabilities of selection are equal, ¥ =-7¢l , P = —ﬁl ,

17 "3

and P, = —— .,
i-

Illustration 2.2. Suppose there are 5,000 students in a university.

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living
in dormitory A. From a list of the 5,000 students, one student is selected

at random. Assuming each student had an equal chance of selection, the

probability that the selected student is a freshman is %g%g—, that he is a

1400 . . 1600
5000 ° and that he is either a freshman or a sophomore is <000 +

sophomore is

%%g% . Also, the probability that the selected student lives in dormitory A
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500

is 000 -

But, what is the probability that the selected student is either
a freshman or lives in dormitory A? The question involves two classifica-
tions: one pertaining to the student's class and the other to where the
student lives. The information given about the 5000 students could be

arranged as follows:

Class

Dormitory : : Total
: Freshmen Sophomores Others

A : : 500
Other : : 4500 :
Total : 1600 1400 2000 : 5000 :

From the above format, one can readily observe that the answver to the ques-
. tion depends upon how many freshmen live in dormitory A. If the problem

had stated that 200 freshmen live in dormitorv A, the answer would have

beeqn 1600 . 500 200
€en =600 T 5000 ~ 5000 °

Statements about probability need to be made and interpreted with
great care. For example, it is not correct to say that a student has a
probability of 0.1 of living in dormitory A simply because 500 students out
of 5000 live in A. Unless students are assigned to dormitories by a random
process with known probabilities there is no basis for stating a student's
probability of living in (being assigned to) dormitory A. We are consider-
inpg the outcome of a random selection.

Exercise 2.1. Suppose one has the following information about a

population of 1000 farms:



600

300

100

200

200

produce corn

produce sovbeans
produce wheat

produce wheat and corn
have one or more cows

all farms that have cows

also produce corn

farms do not produce any -crops

40

One farm is selected at random with equal probability from the list

of 1000. What is the probability that the selected farm,

(a)

nroduces corn? Answer:
does not produce wheat?

produces corn but no whe

0.6

at? Answer: 0.

produces corn or wheat but not both?

has no cows? Answver:
produces corn or soybean

produces corn and has no

0.8

s?

cows?

Answver:

produces either corn, cows, or bota?

does not produce corn or

wheat?

One of the above questions cannot be answered.

Exercise

2.2, Assume a population of 10 elements

probabilities

as follows:

Element i A
1 2 .05
2 7 .10
3 12 05
4 0 .02
5 8 .20

6

5

0.4

and selection
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One_element is selected at random with probability Pi'
Find:

(a) P(X=2),. the probability that X = 2.

(b) P(X>10), the probability that X is greater than 10,

(c) P(X<2), the probability that X is equal to or less than 2.

(d) P(3<X>10), the probability that X is greater than 3 and less
than 10

(e) P(X<3 or X>10), the probability that X is either equal to or less

than 3 or 1s equal to or greater than 10.

Note: The answer to (d) and the answer to (e) should add to 1.
So far, we have been discussing the probability of an event occurring as
a result of a single random selection. When more than one random selection
occurs simultaneously or in succession the multiplicative law of prob-
ability 1is useful.
2.3 MULTIPLICATION OF PROBABILITIES

Assume a population of N elements and selection probabilities

N
P P P._. Each Pi is greater than zero and IP, = 1. Suppose

120 oPyoeeeBy : {
two elements are selected but before the second selection is made the
first element selected is returned to the population. 1In this case the
outcome of the first selection does not change the selection probabilities
for the second selection. The two selections (events) are independent.
The probability of selecting the ith element first and the jth element
second is, Pin, the product of the selection probabilities Pi and Pj'

If a selected element 1is not returned to the population before the next

gselection is made, the selection probabilities for the next selection are

changed. The selections are dependent.
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The multiplicative law of probability, for two independent events
A and B, states that the joint probability of A and B happening in the
order A,B is equal to the probability that A happens times the prob-
ability that B happens. In equation form, P(AB) = P(A)P(B). For the
order B,A, P(BA) = P(B)P(A) and we note that P(AB) = P(BA). Remember,
independence means that the probability of B happening is not affected
by the occurrence of A and vice versa. The multiplicative law extends
to any number of independent events. Thus, P(ABC) = P(A)P(B)P(C).

For two dependent events A and B, the multiplicative law states that
the joint probability of A and B happening in the order A,B is equal to
the probability of A happening times the probability that B happens under
the condition that A has already happened. In equaticn form P(AB) =
P(A)P(BIA); or for the order B,A we have P(BA) = P(B)P(A’B). The vertical

"

bar can usually be translated as "given'" or '"given that. The notation on
the left of the bar refers to the event under consideration and the nota-
tion on the right to a condition under which the event can take place.
P(B|A) is called conditional probability and could be read ''the prob-
ability of B, given that A has already happened," or simply "the prob-
ability of B given A." When the events are independent, P(B|A) = P(B);
that is, the conditional probability of B occurring is the same as the
unconditional probability of B. Extending the multiplication rule to a
series of three events A,B,C occurring in that order, we have P(ABC) =
P(A)P(B|A)P(C|AB) where P(C|AB) is the probability of C occurring, given
that A and B have already occurred.

2.4 SAMPLING WITH REPLACEMENT

When a sample is drawn and each selected element is returned to the

population before the next selection is made, the method of sampling is
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called "sampling with replacement." In this case, the outcome of one
selection does not change the selection probabilities for another
selection.

Suppose a sample of n elements is selected with replacement. Let the

values of X in the sample be x ,xz,...,xn where x, is the value of X

1 1

obtained on the first selection, x., the value obtained on the second

2

selection, etc. Notice that X is a random variable that could be equal

to any value in the population set of values X ’XZ""’XN’ and the prob-

1

equals X, is P,. The same statement applies to X, etc.

ability that x 1 i

1
Since the selections are independent, the probability of getting a sample

of n in a particular order is the product of the selection probabilities

namely, p(xl)p(xz)...p(xn) where p(xl) is the P, for the element selected

i

on the first draw, p(xz) is the P, for the =lement selected on the second

i

draw, etc.

Illustration 2.3. As an illustration, consider a sample of two

elements selected with equal probability and with replacement from a popu-
lation of four elements. Suppose the values of some characteristic X for

the four elements are Xl’ X2, X3, and X&' There are 16 possibilities:

1°%1 2°"1 3°*1 4°"1
KoK,  X,0K, XX, X, X,
XKy KyXy XXy XXy

1 1
7 and p(xz) is always "
1

Hence each of the 16 possibilities has a probability of (%)(%9 =16 *

In this illustration p(xl) is always equal to
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Each of the 16 possibilities is a different permutation that could
be regarded as a separate sample. However, in practice (as we are not
concerned about which element was selected first or second) it is more
logical to disregard the order of selection. Hence, as possible samples

and the probability of each occurring, we have:

Sample Probability Sample Probability
Xl,Xl 1/16 XZ’XB 1/8
xl,x2 1/8 Xz’xa 1/8
xl,x3 1/8 X3,X3 1/16
Xl,XA 1/8 X3,X4 1/8
XZ’XZ 1/16 XA’XA 1/16

Note that the sum of the probabilities is 1. That must always be the
case if all possible samples have been listed with the correct prob-
abilities. Also note that, since the probability (relative frequency
of occurrence) of each sample is known, the average for each sample is
a random variable. 1In other words, there were 10 possible samples, and
any one of 10 possible sample averages could have occurred with the
probability indicated. This is a simple illustration of the fact that
the sample average satisfies the definition of a random variable. As
the theory of sampling unfolds, we will be examining the properties of
a sample average that exist as a result of its being a random variable.
Exercise 2.3. With reference to Illustration 2.3, suppose the
1 3 1

1
;* Py =g Py g and P =5

Find the probability of each of the ten samples, Remember the sampling

probabilities of selection were Pl

is with replacement. Check your results by adding the 10 probabilities.
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The sum should be 1. Partial answer: For the sample composed of elements

2 and 4 the probability is (%9(%9 + (%9(%9 - L

2.5 SAMPLING WITHOUT REPLACEMENT

When a selected element is not returned to the population before the
next selection is made, the sampling method is called sampling without
replacement. 1In this case, the selection probabilities change from one
draw to the next; that is, the selections (events) are dependent,

As above, assume a population of N elements with values of some
characteristic X equal to xl’XZ""’XN' Let the selection probabilities
for the first selection be P_,...,P

1

Suppose three elements are selected without replacement. Let X5 %o, and

,+«+P_ where each Pi>0 and ZPi = 1.

i N

X, be the values of X obtained on the first, second; and third random

3

draws, respectively. What is the probability that Xy = XS’ X, = X6’ and

Xy = X7? Let P(XS’XG’X7) represent this probability,which is the prob-

ability of selecting elements 5, 6, and 7 in that order.

According to the multiplicative probability law for dependent events,

P(X;,Xg,X,) = P(XS)P(X6]X5)P(X7 Xg %)

It is clear that P<X5) =P For the second draw the selection prob-

5°
abilities (after element 5 is eliminated) must be adjusted so they add

to 1. Hence, for the second draw the selection probabilities are

1 i °3 i s _Sﬁ_ That is, P(X_|X.) = —Eki—
- ’ - s - ? _ > - LR 4 - . ’ - *
1 P5 1 P5 1 P5 1 PS 1 PS 1 PN 65 1 PS
P7
Similarly, P(-X7]X5,X6) 15 5 *
5 6
P P

6 7
Therefore, P(XS,X6,X7) = (Ps)(l_PS)(l_PS_P ) (2.1)

6
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p P

_ 5 7 . .
Observe that P(X6,X5,X7) = (P6)(1_P6)(1_P6_P5). Hence, P(XS’X6’X7) #
P(X6,X5,X7) unless P5 = P6. In general, each permutation of n elements
has a different probability of occurrence unless the P,'s are all equal.

i

To obtain the exact probability of selecting a sample composed of ele-
ments 5, 6, and 7, one would need to compute the probability for each of
the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual process ‘of selection, it is not neces-
sary to compute a new set of selection probabilities after each selection
is made. Make each selection in the same way that the first selection
was made. If an element is selected which has already been drawn, ignore
the random number and continue the same process of random selection
until a new element is drawn.

As indicated by the very brief discussion in this section, the
theory of sampling without replacement and with unequal probability of
selection can be very complex. However, books on sampling present ways
of circumventing the complex problems. In fact, it is practical and
advantageous in many cases to use unequal probability of selection in
sampling. The probability theory for sampling with equal probability
of selection and without replacement is relatively simple and will be
discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible

samples of two when sampling without replacement. Let P1 = %, P2 = %,
P3 =-%, and P4 = %. List the six possible samples and find the prob-

ability of getting each sample. Should the probabilities for the six

samples add to 1?7 Check your results.



47

Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the
probability: (a) that element number 10 is not selected, (b) that ele-
ment number 10 is selected only once, and (c¢) that element number 10 is
selected twice? As a check, the three probabilities should add to 1.
Why? Find the probability of selecting the combination of elements 10
and 20.

Exercise 2.6. Refer to Exercise 2.5 and change the specification

"with replacement" to 'without replacement."” Answer the same questions.
Why is the probability of getting the combination of elements 10 and 20
greater than it was in Exercise 2.57?

2.6 SIMPLE RANDOM SAMPLES

In practice, nearly all samples are selected without replacement.
Selection of a random sample of n elements, with equal probability and
without replacement, from a population of N elements is called simple
random sampling (srs). One element must be selected at a time, that is,
n separate random selections are required.

First, the probability of getting a particular combination of n
elements will be discussed. Refer to Equation (2.1) and the discussion
preceding it. The Pi's are all equal to % for simple random sampling.
Therefore, Equation (2.1) becomes P(XS’X6’X7) - (%)(ﬁ%ij(ﬁ%i . All per-
mutations of the three elements 5, 6, and 7 have the same probability of
occurrence. There are 3! = 6 possible permutations. Therefore, the
probability that the sample is composed of the elements 5, 6, and 7 is
D) (2)(3) . Any other combination of three elements has the same
N(N-1) (N-2)

probability of occurrence.
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In general, all possible combinations of n elements have the same
chance of selection and any particular combination of n has the following

probability of being selected:

(2)(3)...(n) ., nl(N-n)!
N(N-1) (N-2)...(N-n+l1) N!

(2.2)

N!
n!(N-n)!

possible combinations (samples) of n elements. If each combination of

According to a theorem on number of combinations, there are

n elements has the same chance of being the sample selected, the probability
of selecting a specified combination must be the reciprocal of the number
of combinations. This checks with Equation (2.2).

An important feature of srs that will be needed in the chapter on
expected values is the fact that the jth element of the population is as
likely to be selected at the ith random draw as any other. A general
expression for the probability that the jth element of the population is
selected at the ith drawing 1is

N-1, N-2. N-3,  N-i+l., 1 1
OG- G2 GwD T W (2.3)

Let us check Equation 2.3 for i = 3. The equation becomes

N-1, N-2., 1 1
( N )(N-l)(N-Z) =3

The probability that the jth element of the population is selected at the
third draw is equal to the probability that it was not selected at either
the first or second draw times the conditional probability of being
selected at the third draw, given that it was not selected at the first

or second draw. (Remember, the sampling is without replacement). Notice
that Eﬁi is the probability that the jth element is not selected at the
first draw and %Eg is the conditional probability that it was not selected

1
N-1y 82y js the probability that the j<"

at the second draw. Therefore, ( N )(E:T
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element has not been selected prior to the third draw. When the third
draw is made, the conditional probability of selecting the jth element

is L . Hence the probability of selecting the jth element at the third

N-2
N-1,,N-2., 1 1
N )(N—l) G=3 N

draw is ( ) = . This verifies Equation (2.3) for i = 3,

To summarize, the general result for any size of sample is that the
jth element in a population has a probability equal to %—of being selected
at the ith drawing. It means that Xy (the value of X obtained at the ith
draw) is a random variable that has a probability of %-of being equal to
any value of the set Xl,...,XN.

What probability does the jth element have of being included in a
sample of n? We have just shown that it has a probability of % of being
selected at the ith drawing. Therefore, any given element of the popula-
tion has n chances, each equal to % » of being included in a sample. The
element can be selected at the first draw, or the second draw,..., or the
nth draw and it cannot be selected twice because the sampling is without
replacement. Therefore the probabilities, %—for each of the n draws, can
be added which gives ﬁ-as the probability of any given element being
included in the sample.

Illustration 2.4. Suppose one has a list of 1,000 farms which includes

some farms that are out-of-scope (not eligible) for a survey. There is no
way of knowing in advance whether a farm on the list is out-of-scope. A
simple random sample of 200 farms is selected from the list. All 200 farms
are visited but only the ones found to be in scope are included in the
sample. What probability does an in-scope farm have of being in the sam-

ple? Every farm on the list of 1000 farms has a probability equal to %
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of being in the sample of 200. All in-scope farms in the sample of 200

are included in the final sample. Therefore, the answer is %.

Exercise 2.7. From the following set of 12 values of X a srs of

three elements is to be selected: 2, 10,15, 8, 1, 15, 7, 8, 13, 4, 6,
and 2. Find P(§212) and P(3<§<12). Remember that the total possible
number of samples of 3 can readily be obtained by formula. Since every
possible sample of three is equally likely, you can determine which sam-
ples will have an §§3 or an ;212 without listing all of the numerous
S P(R<3) = 22 ; P(3<k<12) =
220 ° - ’

220
2.7 SOME EXAMPLES OF RESTRICTED RANDOM SAMPLING

208

possible samples. Answer: P(§312) = 720"

There are many methods other than srs that will give every element
an equal chance of being in the sample, but some combinations of n ele-
ments do not have a chance of being the sample selected unless srs is
used. For example, one might take every kth element beginning from a
random starting point between 1 and k. This is called svstematic sam-
pling. For a five percent sample k would be 20, The first element for
the sample would be a random number between 1 and 20. If it is 12, then
elements 12, 32, 52, etc., compose the sample. Lvery element has an
equal chance, %6 » of being in the sample, but there are only 20 com-
binations of elements that have a chance of being the sample selected.
Simple random sampling could have given the same sample but it is the

method of sampling that characterizes a sample and determines how error

due to sampling is to be estimated. One may think of sample design as a
matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the combinations which
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have a chance of being the sample selected are generally 'better'" than
many of the combinations that could occur with simple random sampling.
At the same time, important properties that exist for simple random sam-
ples need to be retained. The key properties of srs will be developed in
the next two chapters.

Another common method of sampling involves classification of all
elements of a population into groups called strata. A sample is selected

h

t
from each stratum. Suppose N, elements of the population are in the i

i

stratum and a simple random sample of n, elements is selected from it.

This is called stratified random sampling. It is clear that every ele-
n

ment in the ith stratum has a probability equal to ﬁl of being in the
n i

sample. If the sampling fraction, ﬁi , is the same fqr all strata,
i n
every element of the population has an equal chance, namely N of

being in the sample. Again every element of the population his an equal
chance of selection and of being in the sample selected, but some combi-
nations that could occur when the method is srs cannot occur when
stratified random sampling is used.

So far, our discussion has referred to the selection of individual
elements, which are the units that data pertain to. For sampling purposes
a population must be divided into parts which are called sampling units.
A sample of sampling units is then selected. Sampling units and elements
could be identical. But very often, it is either not possible or not
practical to use individual elements as sampling units. For example,
suppose a sample of households is needed. A list of households does not

exist but a list of blocks covering the area to be surveyed might be avail-

able. In this case, a sample of blocks might be selected and all households
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within the selected blocks included in the sample. The blocks are the
sampling units and the elements are households. Everv element of the
population should belone to one and only one sampling unit so the list of
sampling units will account for all elements of the population without
duplication or omission. Then, the probability of selecting any given
element is the same as the probability of selecting the sampling unit
that it belongs to.

Illustration 2.5. Suppose a population is composed of 1800 dwelling
units located within 150 well-defined blocks. There are several possible
sampling plans. A srs of 25 blocks could be selected and every dwelling
unit in the selected blocks could be included in the sample. In this
case, the sampling fraction is 1 and every dwelling unit has a probability

6

of %’0f being in the sample. Is this a srs of dwelling units? No, but
one could describe the sample as a random sample (or a probability sample)
of dwelling units and state that every dwelling unit had an equal chance
of being in the sample. That is, the term "simple random sample' would
apply to blocks, not dwelling units. As an alternative sampling plan, 1if
there were twelve dwelling units in each of the 150 blocks, a srs of two
dwelling units could be selected from each block. This scheme, which is an
example of stratified random sampling, would also give every dwelling unit
a probability equal to %~of being in the sample.

Illustration 2.6. Suppose that a sample is desired of 100 adults
living in a specified area. A list of adults does not exist, but a list
of 4,000 dwelling units in the area is available. The proposed sampling

plan is to select a srs of 100 dwelling units from the list. Then, the

field staff is to visit the sample dwellings and list all adults living
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in each. Suppose there are 220 adults living in the 100 dwelling units,.
A simple random sample of 100 adults is selected from the list of 220.
Consider the probability that an adult in the population has of being in
the sample of 100 adults.

Parenthetically, we should recognize that the discussion which
follows overlooks important practical problems of definition such as the
definition of a dwelling unit, the definition of an adult, and the defini-
tion of living in a dwelling unit. However, assume the definitions are
clear, that the list of dwelling units is complete, that no dwelling is
on the list more than once, and that no ambiguity exists about whether
an adult lives or does not live in a particular dwelling unit. Incom-
plete definitions often lead to inexact probabilities or ambiguity that
gives difficulty in analyzing or interpreting results. The many practical
problems should be discussed in an applied course on sampling.

It is clear that the probability of a dwelling unit being in the
sample is %6 . Therefore, every person on the list of 220 had a chance
of %a-of being on the list because, under the specifications, a person
lives in one and only one dwelling unit, and an adult's chance of being
on the list is the same as that of the dwelling unit he lives in.

The second phase of sampling involves selecting a simple random
sample of 100 adults from the list of 220. The conditional probability
of an adult being in the sample of 100 is %%% = %T . That is, given the
fact that an adult is on the list of 220, he now has a chance of %I of
being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected
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following the above specifications, each dwelling unit in the population
would again have a chance of %6 of beinpg in sample; but, the number of
adults listed is not likely to be 220 so the conditional probability at
the second phase depends upon the number of dwellings units in the sample
blocks. Does every adult have the same chance of being in the sample?
Examine the case carefully. An initial impression could be misleading.
Every adult in the population has an equal chance of being listed in the
first phase and every adult listed has an equal chance of being selected
at the second phase. But, in terms of repetition of the whole sampling
plan each person does not have exactly the same chance of being in the
sample of 100. The following exercise will help clarify the situation
and is a good exercise in probability.

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with

the following numbers of adults:

Dwelling Unit No. of Adults
1 2
2 4
3 1
4 2
> 3

A srs of two d.u.'s 1s selected. A srs of 2 adults is then selected from

a list of all adults in the two d.u.'s. Find the probability that a speci-
fied adult in d.u. No. 1 has of being in the sample. Answer: 0.19. Find
the probability that an adult in d.u. No. 2 has of being in the sample.
Does the probability of an adult being in the sample appear to be related

to the number of adults in his d.u.? In what way?
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An alternative is to take a constant fraction of the adults listed
instead of a constant number. For example, the specification might have
been to select a random sample of %—of the adults listed in the first
phase. In this case, under repeated application of the sampling speci-
fications, the probability at the second phase does not depend on the
outcome of the first phase and each adult in the population has an equal
chance, (%6)(%) = %6-, of being selected in the sample. Notice that
under this plan the number of adults in a sample will vary from sample
to sample; in fact, the number of adults in the sample is a random variable.

For some surveys, interviewing more than one adult in a dwelling unit
is inadvisable. Again, suppose the first phase of sampling is to select
a srs of 100 dwelling units. For the second phase, consider the following:
When an interviewer completes the listing of adults in a sample dwelling,
he is to select one adult, from the list of those living in the dwelling,
at random in accordance with a specified set of instructions. He then
interviews the selected adult if available; otherwise, he returns at a
time when the selected adult is available. What probability does an adult
living in the area have of being in the sample? According to the multi-
plication theorem, the answer is P’(D)P(A|D) where P7(D) is the probability
of the dwelling unit, in which the adult lives, being in the sample and
P(A]D) is the probability of the adult being selected given that his
dwelling is in the sample. More specifically, P°(D) = %6 and P(A|D) = %T .
where ki is the number of adults in the ith dwelling. Thus, an adult's ’
chance, (%6)(%7), of being in a sample is inversely proportional to the
number of adults in his dwelling unit.

Exercise 2.9. Suppose there are five dwelling units and 12 persons

living in the five dwelling units as follows:
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Dvelling Unit Individuals
1 1, 2
2 3, 4, 5, 6
3 7, 8
4 9
5 10, 11, 12

1. A sample of two dwelling units is selected with equal probability
and without replacement. All individuals in the selected dwelling units
are in the sample. What probability does individual number 4 have of being
in the sample? Individual number 9?

2. Suppose from a list of the twelve individuals that one individual
is selected with equal probability. From the selected individual two
items of information are obtained: his age and the value of the dwelling

in which he lives. Let X represent the ages of the 12 indi-

1> XpreeeaXy,y

viduals and let Y ..,Y. represent the values of the five dwelling units,

1°° 5
Clearly, the probability of selecting the ith individual is %f and there-
fore P(Xi) = %5 . Find the five probabilities P(Yl)""’P(YS)' Do you

agree that P(Y3) = %5 ? As a check, ZP(Yj) should equal one.

3. Suppose a sample of two individuals is selected with equal prob-

ability and without replacement. Let Ylj be the value of Yj obtained at

the first draw and Y2j be the value of Yj obtained at the second draw.

Does P(Ylj) = P(Yzj)? That is, is the probability of getting Yj on the
second draw the same as it was on the first? If the answer is not evident,

refer to Section 2.5.

Exercise 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only
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as an exercise and without consideration of whether it is a good one: A
sample of 10 third-grade classes 1s to be selected. All students in the
10 classes will be included in the sample.

Step 1. Select a srs of 10 school districts.

Step 2. Within each of the 10 school districts, prepare a list

of public schools having a third grade. Then select one
school at random from the list.

Step 3. For each of the 10 schools resulting from Step 2, list

the third-grade classes and select one class at random.
(If there is only one third-grade class in the school,
it is in the sample). This will give a sample of 10 classes.

Describe third-grade classes in the population which have relatively
small chances of being selected. Define needed notation and write a
mathematical expression representing the probability of a third-grade
class being in the sample.

2.8 TWO-STAGE SAMPLING

For various reasons sampling plans often employ two or more stages
of sampling. For example, a sample of counties might be selected, then
within each sample county a sample of farms might be selected.

Units used at the first stage of sampling are usually called primary
sampling units or psu's. The sampling units at the second stage of sam-
pling could be called secondarv sanmpling units. However, since there has
been frequent reference earlier in this chapter to "elements of a popula-

tion,"

the sarmnling units at the second stage will be called elements.
In the simple case of two-stage sampling, each element of the popu-

lation is associated with one and only one primary sampling unit. Let i
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be the index for psu's and let j be the index for elements within a psu.

Thus Xij represents the value of some characteristic X for the jth element

in the ith psu. Also, let

M = the total number of psu’'s,

m-= the number of psu's selected for a sample,

Ni = the total number of elements in the 1th psu, and

n, = the number of elements in the sample from the ith psu.
Then,

M

?Ni = N, the total number of elements in the population, and

i

m

ini = n, the total number of elements in the sample.

Now consider the probability of an element beinpg selected by a two
step process: (1) Select one psu, and (2) select one element within the

selected psu. Let,

Pi = the probability of selecting the ith psu,

P h

jli = the conditional probability of selecting the jt
element in the ith psu given that the ith psu has already

been selected, and

Pij = the overall probability of selecting the jth element in
the ith psu.
Then,
P13 7 PPl

If the product of the two probabilities, Pi and P is constant for

ilee

every element, then every element of the population has an equal chance of
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being selected. 1In other words, given a set of selection probabilities

1
] = =
Pl,...,PM for the psu's, one could specify that Pij N and compute lei ,
where P,li = ﬁ%— , S0 every element of the population will have an equal
i

chance of selection.

Exercise 2.11. Refer to Table 2.1. An element is to be selected by

a three-step process as follows: (1) Select one of the Y classes (a row)

N
with probability ﬁl', (2) within the selected row select an X class (a
N
column) with probability ﬁli , (3) within the selected cell select an
i

element with equal probability. Does each element in the population of N
elements have an equal probability of being drawn? What is the probability?
The probability of an element being included in a two-stage sample

is given by

= P’P? (2.4)

Pis = PiPyls

where
P{ = the probability that the ith psu is in the sample
of psu's, and

lei = the conditional probability which the j element has

of being in the sample, given that the ith psu has

been selected.

The inclusion probability P{ will be discussed very briefly for three

3

important cases:

(1) Suppose a random sample of m psu’'s is selected with equal prob-

ability and without replacement. The probability, P{ , of the ith psu

being in the sample is fl = % where f1 is the sampling fraction for the

first-stage units. In the second stage of sampling assume that, within

each of the m psu's, a constant proportion, f,, of the elements is selected.

2
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That is, in the ith psu in the sample, a simple random sample of n, ele-

ments out of Ni is selected, the condition being that n, = fZNi' Hence,

the conditional probability of the jth element in the ith psu being in

n,
the sample is P{[i = ﬁl'= f2 . Substituting in LEquation 2.4, we have
R t i
P, = f f. which shows that an element's probability of being in the

ij 12
sample is equal to the product of the sampling fractions at the two stages.

In this case Pij is constant and is the overall sampling fraction,

Unless Ni is the same for all psu's, the size of the sample,

n, = fZNi , varies from psu to psu. Also, since the psu's are selected
m mn
at random the total size of the sample, n = Zni = f_IN is not constant

i 2 i i’
with regard to repetition of the sampling plan. In practice variation in
the size, ., of the sample from psu te psu might be very undesirable. If
appropriate information is available, it is possible to select psu's with
probabilities that will equalize the sample sizes n, and also keep Pij
constant.

(2) Suppose one psu is selected with probability Pi =5 This
is commonly known as sampling with pps (probability proportional to size).
Within the selected psu, assume that a simple random sample of k elements

is selected. (If any Ni are less than k, consolidations could be made so

all psu's have an Ni greater than k). Then,

z

T3 . . k _k
SRS P »oand Pro= oy TN

P’ =
1 i i

2=

which means that every element of the population has an equal probability,
% , of being included in a sample of k elements.
Extension of this sampling scheme to a sample of m psu's could

encounter the complications indicated in Section 2.5. However, it was
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stated that means exist for circumventing those complications. Sampling
books 1/ discuss this matter quite fully so we will not include it in this

monograph. The point is that one can select m psu's without replacement
N

in such a wéy that m qi is the probability of including the ith psu in
L
N
the sample. That is, P; =m ﬁl-. If a random sample of k elements is

selected with equal probability from each of the selected psu's,

rd k
Pj|i Ni and

N
f e m Yy Mk n
Py T (mN)(Ni) N N

Thus, if the N, are known exactly for all M psu's in the population,

i
and if a list of elements in each psu is available, it is possible to
select a two-stage sample of n elements so that k elements for the sample
come from each of m psu's and every element of the population has an equal
chance of being in the sample. In practice, however, one usually finds
one of two situations: (a) there is no information on the number of ele-
ments in the psu's, or (b) the information that does exist is out-of-date.
Nevertheless, out-of-date information on number of elements in the psu's
can be very useful. It is also possible that a measure of size might

exist which will serve, more efficiently, the purposes of sampling.

(3) Suppose that characteristic Y is used as a measure of size. Let

Y
Yi be the value of Y for the ith psu in the population and let Pi = ?l
M
where Y = ZYi . A sample of m psu's is selected in such a way that
i

Y

Pi = m §£ is the probability that the ith psu has of being in the sample.

1/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory. Volume I, Chapter 8. John Wiley and Sons. 1953.
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With regard to the second stage of sampling, let f be the sampling

21

fraction for selecting a simple random sample within the ith psu in the

sample. That is, P;li = f“i . Then,
Yi
Pij = (m Y—)(fh) (2.5)

In setting sampling specifications one would decide on a fixed value
for Pij. In this context Pij is the overall sampling fraction or propor-
tion of the population that is to be included in the sample. For example,

if one wanted a 5 percent sample, Pij would be .05, Or, if one knew there

were approximately 50,000 elements in the population and wanted a sample

of about 2,000, he would set P; = ,04. Hence, we will let f be the over-

i

-

all sampling fraction and set Pii

equal to f. Decisions are also made on
the measure of size to be used and on the number, m, nf psu's to be selected.
In Equation 2.5, this leaves f21 to be determined. Thus, f21 is computed

as follows for each psu in the sample:

Use of the sampling fractions f i at the second stage of sampling will give

2
every element of the population a probability equal to f of being in the

sample. A sample wherein every element of the population has an equal

chance of inclusion is often called a self-weighted sample.
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CHAPTER III. ELXPECTED VALULS OF RANDOM VARIABLES

3.1 INTRODUCTION
The theory of exnected values of random variables is used exten-
sively in the theorv of sampling; in fact, it is the foundation for
sampling theory. Interpretations of the accuracy of estimates from
probability samples depend heavily on the theory of expected values.
The definition of a random variable was discussed in the previous
chapter. It is a variable that can take (be equal to) any one of a
defined set of values with known probability. Let Xi be the value of X
for the ith element in a set of N elements and let Pi be the nrobability
that the ith element has of heine selected by some chance operation so
that Pi is known a priori. What is the expected value ova?
Definition 3.1. The expected value of a random variable X is
N N

Pixi where I Pi=l. The mathematical notation for the expected value
1 i=1

il o1

i
N

of X is E(X). Hence, bv definition, E(X) = I Pixi .
i=1

Observe that EPiXi is a weighted average of the values of X, the
weights being the probabilities of selection. "Expected value'" is a
substitute expression for "averape value." 1In other words, E means ''the
average value of" or "find the averape value of" whatever follows E. For
example, E(Xz),read "the expected value of Xz;'refers to the average value

of the squaresof the values that X can equal. That is, by definition,

N

E(Xz) = J P,Xi
i=1 *

If all of the N elements have an equal chance of being selected, all

values of Pi must equal %-because of the requirement that ZPi = 1. In
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this case, E(X) = I X, = = X , which is the simple average of X

for all N elements.

Illustration 3.1. Assume 12 elements having values of X as follows:

X, =3 X, =5 Xg = 10

X, =9 X, = 3 X, = 3

Xy = 3 Xy = 4 X, =8

X, =5 Xg = 3 Xy, = b
349+, . .+4

For this set, E(X)

]

12 = 5, assuming each element has the same
chance of selection. Or, by counting the number of times that each

unique value of X occurs, a frequency distribution of X can be obtained

as follows:

1 3
3 5
4 2
5 2
8 1
9 1
10 1

where Xj is a unique value of X and Nj is the number of times X, occurs.

i

EN X, IX
We noted in Chapter I that IN, = N, IN.X, = IX,, and that —+d = —% = X .
3 3 i ZNj N

Suppose one of the X, values is selected at random with a probability equal

3

\J

N, N,
to Pj where Pj = f%_ = ﬁl . What is the expected value of Xj ? By



65

definition E(X,) = IP X, = X, = B I X . The student may verify
h| 33 N N

that in this illustration E(Xi) = 5. Note that the selection specifica-

tions were equivalent to selecting one of the 12 elements at random with

equal probability.

Incidentally, a frequency distribution and a probability distribution

are very similar. The probability distribution with reference to Xj would

be:
el J1
3 5/12
4 2/12
5 2/12
8 1/12
9 1/12
10 1/12

The 12 values, P for the 12 elements are also a probability distri-

3
i N
bution. This illustration shows two ways of treating the set of 12
elements,

When finding expected values be sure that you understand the defini-
tion of the set of values that the random variable might equal and the

probabilities involved.

Definition 3.2. When X is a random variable, by definition the

expected value of a function of X is

N
E[f(X)] = I P [f(X))]
{=1 i i

Some examples of simple functions of X are: f(X) = aX, f(X) = Xz,

£(X) = a + bX + cxz, and f(X) = (X-i)2 . For each value, X in a

i ’

defined set there is a corresponding value of f(Xi).



Illustration ng. Suppose f(X) = 24+3. With reference to the set

of 12 elements discussed above, there are 12 values of f(Xi) as follows:

f(Xl) ()3 +3=9

#

(2)() + 3

X 2
f(xz) 21

f(XlZ) =2(4) +3=11

Assuming Pi = % the expected value of f(X) = 2X+3 would be

12

| -l DO S I Ly =
E(2X+3) = i N(2A1+3) = (12)(9)+(12)(21)+...+(12)(ll) 13

In algebraic terms, for f(X) = aX+b, we have

N
S (aX+b) = +b) = IP, (ad
E (aX+b) iilpi(axi b) P (aX,) + IP.b

By definition ZPi(aXi) = E(aX), and ZPib = E(b). Therefore,

E(aX+b) = E(aX) + E(b)

Since b is constant and ZPi =1, ZPib = b, which leads to the first

important theorem in expected values.

Theorem 3.1. The expected value of a constant is equal to the

constant: E(a) = a.
By definition E(aX) = IP_ (aX,) = aIP,X,. Since IP X,6 =
i i i7i iTi

another important theorem:

(3.1)

(3.2)

E(X), we have

Theorem 3.2. The expected value of a constant times a variable equals

the constant times the expected value of the variable: E(aX) = aE(X).
Applying these two theorems to Equation (3.2) we have E(aX+h)
akE(X) + b. Therefore, with reference to Illustration 3.2, E(2X+3)

2E(X) + 3 = 2(5) + 3 = 13, which is the same as the result found in

Equation (3.1).
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Exercise 3.1. Suppose a random variable X can take any of the

following four values with the probabilities indicated:

X, =2 X, =5 X, = 4 X, =6

-]
(]
~No
-~
(o2}
d
I

2/6 P

]
o
~
(o))
-]

[l§

1/6
(a) Find EX) Answer: 4

. 2 1 2 2
(b) Find E{X") Answer: 185. Note that E(X") # [EX)]
(¢) Find E(X-X) Answer: 0 Note: By definition

4
E(X-X) = I P,(X.-X)
=1 * 7

- 1
(d) Find E(X—X)2 Answer: 25. Wote: By definition

P (X,-X)?
l 1 1

E(X—i)2 =
i

[ o P S

Exercise 3.2. From the following set of three values of Yi one

value is to be selected with a probabilitv P{:

Y1 = =2 Y2 = 2 Y3 = /4
Pl = 1/4 P2 = 2/4 P3 = 1/4
(a) TFind E(Y) Answer: l%
{(b) Find E(l) Answer: 3/16. Note: 1 # E(L)
Y : ‘ E(Y) 'Y

(c) Find E(Y—?)2 Answer: 4%

3.2 EXPECTED VALUE OF THE SUM OF TWO RANDOM VARIABLES

The sum of two or more random variables is also a random variable.
If X and Y are two random variables, the expected value of X + Y is equal
to the expected value of X plus the expected value of Y:E(X+Y) = E(X)+E(Y).
Two numerical illustrations will help clarifv the situation.

Illustration 3.3. Consider the two random variables X and Y in

Exercises 3.1 and 3.2:
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2 1
LAY JEEINE
X,=5 P,= - Y, =2 Ps = %
Xy =6 P, = %

Suppose one element of the first set and one element of the second
set are selected with probabilities as listed above. .Jhat is the expected
value of X + Y? The joint probability of getting.Ki and Yj is Pin because
the two selections are independent. lence bv definition
4 3
LT PPI(X, 4 YD) (3.3)
i=1 j=1 * J

E(X + Y) =

The possible values of X + Y and the probabilitv of each are as follows:

X+Y P.P? X+ Y P.P7
U T R S 0
X, +Y =0 PPl = X, +Y =2 IR .
1 1 1’1 24 3 1 31 24
X, +Y, =4 pps =t X, +Y, =6 R
1 2 12 24 3 2 32 24
X, +Y, =6 P.P.= 2 X, +Y,=8 p.opl=i
M1 3 13 24 3 30 33 24
X, +Y =3 PP’ = 2 X, + Y, =4 ppr= L
2 1 21 2% 4 1 41 24
X, +Y, =7 PPl = 2 X, +Y, =8 Popl= 2
2 2 22 24 4 2 42 24
X, +Y, =9 PPl = = X +Y,=10 PPl =i
2 3 237 24 4 3 43 2

As a check the sum of the probabilities must be 1 if all possible
sums have been listed and the probahilitv of each has been correctly

determined. Substituting the values of X

+ Y., and P P in Equation (3.3)
i i i]

we obtain 5.5 as follows for expected value of X + Y:

2 4 1 _ .
653)(0) + (EZ)(a) + ...+ (520(10) = 5.5
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There-

fore, E(X) + E(Y) = 4 + 1.5 = 5.5 which verifies the earlier statement

that E(X + Y) E(X) + E(Y).

Illustration 3.4. Suppose a random sample of two is selected with

replacement from the population of four elements used in Exercise 3.1.

Let x1 be the first value selected and let x2 be the second. Then xl and

x2 are random variables and x1 + x2 is a random variable. The nossible

values of Xy + X, and the probability of each, P(xl,xz),are listed below.

Notice that each possible order of selection is treated separately.

fl. fg P(xl,xz) X %, fl ig P(xl’XZ) X %,
XX 4/36 4 Xg %1 2/36 6
X, X, 4/36 7 Xy X, 2/36 9
X, X, 2/36 6 Xy X, 1/56 8
X, X, 2/36 8 X, X, 1/36 10
X2 X1 4/36 7 X4 Xl 2/36 8
XZ x2 4/36 10 X4 x2 2/36 11
X2 X3 2/36 9 X4 X3 1/36 10
X2 XA 2/36 11 X4 X4 1/36 12

By definition E(xl + x2) is

4 4 2 1 _
36(4) + 3g(7) + 5p(6) + ...+ 56(12) = 8
In Exercise 3.1 we found E(X) = 4. Since Xy is the same random variable

as X, E(xl) = 4, Also, x, is the same random variable as X, and E(xz) = 4,

2
Therefore, E(xl) + E(xz) = 8, which verifies that E(xl+x2) = E(xl) + E(xz).

In general if X and Y are two random variables, where X might equal

Xl""’XN and Y might equal Y Y then E(X + Y) = E(X)+E(Y). The

1°°°
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NM

proof is as follows: By definition E(X+Y) = LI Pij(xj+Yj) where Pij is
ij )

the probability of getting the sum Xi + Yj,and ZEPij = 1. The double

summation 1is over all possible values of Pi (Xi+Yi)' According to

3

the rules for summation we mavy write

NM M NM
IZ P, (X.,4Y,) =ZLL P, X, + 5L P, Y, (3.4)
13 ijri o] 13 ij i ij ij ]

In the first term on the risht, Xi is constant with regard to the summation
over j; and in the second term on the right, Y1 is constant with regard

to the summation over i. Therefore, the right-hand side of Equation (3.4)

can be written as

N M M N
rX, TP, ,+ZY, ZP
i i i 1] i R i ij
M N
And, since L P,, =P, and T P,, = P, , Equation {(3.4) becomes
ij i ij i
j i
NM N M
L P, (X4, )= X,P, +C Y.,P
i3 ijti o ;1 i j i3
N M
By definition & Xipi = E(X) and I Y],P1 = L(Y)
i R

Therefore E(X+Y) = E(X) + E(Y)

If the proof is not clear write the values of Pij(xi+Yj) in a matrix
format. Then, follow the summation manipulations in the proof.

The above result extends to any number of random variables; that is,
the expected value of a sum of random variables is the sum of the expected

values of each., 1In fact, there is a very important theorem that applies

to a linear combination of random variables.
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Theorem 3.3. Let u = +...+ Uy where Ujyseeesuy are random

Y k

variables and ajse..,3 are constants. Then
E(u) = alE(ul) +...+ a E(uk)

or in summation notation

k k
E(u) = E i aju, = i aiE(ui)

The generality of Theorem 3.3 is impressive. For example, with refer-
ence to sampling from a population Xl,..., XN’ ui might be the value of X

obtained at the first draw, u, the value obtained at the second draw, etc.

2

The constants could be weights. Thus, in this case, u would be a weighted

average of the sample measurements. Or, suppose X X5+ .0 ,X, are averages

1

from a random sample for k different age groups. The averages are random
variables and the theorem could be applied to any linear combination of the

averages. In fact uy could be any function of random variables. That is,

the only condition on which the theorem is based is that uiﬁmust be a

random variable,

Illustration 3.5. Suppose we want to find the expected value of

X + Y)2 where X and Y are random variables. Before Theorem 3.3 can be
applied we must square (X + Y). Thus E(X + Y)2 = E(X2 + 2XY + Y2) .
The application of Theorem 3.3 gives E(X + Y)2 = E(X)2 + 2E(XY) + E(Y)z.

Illustration 3.6. We will now show that

E(X-X) (Y-Y) = E(XY) - XY where E(X) = X and E(Y) = ¥
Since (X-X)(Y-Y) = XY - XY - XY + XY we have

E(X-X) (Y-Y) = E(XY-XY-XT+XY)
and application of Theorem 3.3 gives

E(X-X) (Y-Y) = E(XY) - E(XY) - E(YX) + E(XY)
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Since X and Y are constant, E(XY) = X E(Y) = R?, E(YX)

?i, and E(i?) = XY.
Therefore, E(X-X)(Y-Y) = E(XY) - XY
Exercise 3.3. Suppose E(X) = 6 and E(Y) = 4. Find
(a) E(2X+4Y) Answer: 28
(b) [EX)]°  Answer: 144
(c) YE() Ansver: 2
(d) E(5Y-X) Answer: 14
Exercise 3.4. Prove the following, assuming E(X) = X and E(Y) = Y:
(a) E(X-X) =0
(b) E(aX-bY) + cE(Y) = aX + (c-b)¥
(¢) E[a(X-X) + b(Y-Y)] = 0

E(Xz) + 2a% + a°

2

(d) E(x+a)?

() Ex-X72 = Ex%) - X

ft

(f) E(aX+bY) = 0 for any values of a and b if E(X) = 0 and E(Y) = 0.
3.3 EXPECTED VALUE OF AN ESTIMATE
Theorem 3.3 will now be used to find the expected value of the mean
of a simple random sample of n elements selected without replacement from
a population of N elements. The term "simple random sample' implies equal
probability of selection without replacement. The sample average is

X, +...+x
_ 1 n

X = ——————

n
where X, is the value of X for the ith element in the sample. Without
loss of generality, we can consider the subscript of x as corresponding

to the ith draw; i.e., x, is the value of X obtained on the first draw,

1

X, the value on the second, etc. As each X, is a random variable, X

is a linear combination of random variables. Therefore, Theorem 3.3

applies and
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E(x) = % [ECx)) +.oot E(x )]

In the previous chapter, Section 2.6, we found that any given element of
the population had a chance of % of being selected on the ith draw.

This means that Xy is a random variable that has a probability equal to %

of being equal to any value of the population set Xl,...,XN. Therefore,

E(x)) = E(x,) = ... = E(x ) = X

2)

= + ... + - - -
Hence, E(x) = 5———7;————5 = X. The fact that E(x)= X is one of the very

important properties of an average from a simple random sample. Inciden-

tally, E(x) = X whether the sampling is with or without replacement.

Definition 3.3. A parameter is a quantity computed from all values

in a population set. The total of X, the average of X, the proportion of
elements for which X1<A, or any other quantity computed from measurements
including all elements of the population is a parameter. The numerical
value of a parameter is usually unknown but it exists by definition.
Definition 3.4. An estimator is a mathematical formula or rule for

making an estimate from a sample. The formula for a sample average,

Ix
X = —;i » 1s a simple example of an estimator. It provides an estimate of
_ ZXi
the parameter X = N

Definition 3.5. An estimate is unbiased when its expected value

equals the parameter that it is an estimate of. In the above example, X
is an unbiased estimate of X because E(§) = X.
Exercise 3.5. Assume a population of only four elements having values

of X as follows: X, = 2, X

1 =5, X

3= 4, X4 = 6., For simple random samples

of size 2 show that the estimator Nx provides an unbiased estimate of the

2

population total, EXi = 17. List all six possible samples of two and
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calculate Nx for each. This will give the set of values that the random
variable Nx can be equal to. Consider the probahilitv of each of the
possible values of ¥x and show arithmetically that E(x) = 17.

A sample of elements from a population is not always selected by
using equal probabilities of selection. Sampling with unequal prebability
is complicated when the sampling is without replacement, so we will limit
our discussion to sampling with replacement.

Lllqgggigigg_}Lz. The set of four elements and the associated prob-
abilities used in Exercise 3.1 will serve as an examn.e of unbiased
estimation when samples of two elements are selected with unequal prob-

ability and with replacement. Our estimator of the population total,

ez

I

2454446 = 17, will be x~ = ~—}1———

The estimate x~ is a random variable.
Listed below are the set of values that x” can equal and the probability

of each value occurring.

Possible Samples i ]
xl X, 6 4136
Xl X2 10.5 8/36
x| ¥, 15 4736
X)X, 21 4736
X, X, 15 4/36
X, Xg 19.5 4/36

9
X 2 X [4 L 5 . 5 4/ 36
x3 X3 24 1/36
X, X, 30 2/36
37
X, X 36 1/36
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Exercise 3.6. Verify the above values of x and Pi and find the

3

expected value of x°. By definition E(x”) = Zij’. Your answer should

j

be 17 because x” is an unbiased estimate of the population total.
To put sampling with replacement and unequal probabilities in a
general setting, assume the population is Xl""’Xj""’XW and the selec-

tion probabilities are P

1,...,P., S & Let X, be the value of X for

it N’ i

the ith element in a sample of n elements and let Py be the probability

n x
g 1
i=1 Py
which that element had of being selected. Then x~° = T is an unbiased
N
estimate of the population total. We will now show that E(x7) = I Xi .
i=1 -

To facilitate comparison of x” with u in Theorem 3.3, x”~ may be
written as follows:

X X
x" = 2D 4+ 2D
np

npy
1 *y
It is now clear that a, = = and u, = — . Therefore,
i n i Py
X X
E(x") = %{s(;io oot B (3.5)
1 n
*1
The quantity 5— , which is the outcome of the first random selection from
1

the population, is a random variable that might be equal to any one of the

Xl X, X\I Xy X,
set of values - ,..., —J-,..., =~ . The probability that -— equals L is ..
P Py Py P J i

Therefore, by definition

3] N X, N
EGD) =L P (D) =L X,
X,
Since the sampling is with replacement it is clear that any -~ is the some
X i

. 1
random variable as — .

1
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Therefore Equation (3.5) becomes

L N N
E(x”) = =[2 xj +...+ L xi]
i A

Since there are n terms in the series it follows that

1z

E(x") = ¢ Xj .

. U

Exercise 3.7. As a corollary show that the expected value of-% is

equal to the population mean.

By this time, you should be getting familiar with the idea that an
estimate from a probability sample is a random variable. Persons respon-
sible for the design and selection of samples and for making estimates
from samples are concerned about the set of values, and associated
probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The distribution of an estimate generated By prob~

ability sampling is the sampling distribution of the estimate.

The values of x3 and Pj in the numerical Illustration 3.7 are an
example of a sampling distribution. Statisticians are primarily inter-
ested in three characteristics of a sampling distribution: (1) the mean
(center) of the sampling distribution in relation to the value of the
parameter being estimated, (2) a measurc of the variation of possible
values of an estimate from the mean of the sampling distribution, and
(3) the shape of the sampliny distribution. We have been discussing the
first. When the expected value of an estimate equals the parameter being
estimated, we know that the mean of the sampling distribution is equal to

the parameter estimated. But, in practice, values of parameters are

generally not known. To judge the accuracy of an estimate, we need
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information on all three characteristics of the sampling distribution.
Let us turn now to the generally accepted measure of variation of a random
variable.
3.4 VARIANCE OF A RANDOM VARIABLE

The variance of a random variable, X, is the average value of the squares
of the deviation of X from its mean; that is, the average value of (X—i)z.
The square root of the variance is the standard deviation (error) of the
variable.

Definition 3.7. 1In terms of expected values, the variance of a random

variable, X is E(X—i)2 where E(X) = X. Since X is a random variable,

(X—i)2 is a random variable and by definition of expected value,

N
E(x-i)2 =3 Pi(xi-i)2
1

In case Pi = %-we have the more familiar formula for variance, namely,
N
z(xi-i)2
Ex-02 =t - 42

N X

Commonly used symbols for variance include: 02, oi, V2, Sz, Var (X)

z(xi-i)2
and V(X). Variance is often defined as—*jizf——— . This will be discussed

in Section 3.7.
3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES

Two random variables, X and Y, are independent if the joint probability,
Pij’ of getting X, and Y, is equal to (Pi)(P

i A i
of selecting Xi from the set of values of X and P

), where P, is the probability

i

j is the probability of

selecting Yj from the set of values of Y. The variance of the sum of two

independent random variables is the sum of the variance of each. That is,
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Illustration 3.8. In [llustration 3.3, X and Y were independent. We
had listed all possible values of Xi+Yi and the probabilitv of each. From

that listing we can readily compute the variance of X+Y. Bv definition

2 N I = o2
= E[(X+7)-(X = X e .
0X+Y E[(X+Y) (\+Y)] ig Pin[(\i+Y1) (X+Y) 1 (3.6)
Substituting in Equation (3.6) we have
2 2 oy 2 4 e 2 1 ne 2 _ 85
OX+Y = *2—2;(‘)—5.)) + "‘—‘24(4 5.5)7 +...+ 2[4(10 5.5) ‘_12

The variances of X and Y are computed as follows:

2_: _-,?_:_2__ _ 2 ;?. - 2 J:./_. 2 1:. - 2=_7_
ol = E(X-X) 3(2 LY + 6(5 4T + o(“ 4T+ 6(6 4) 3
2 = T _v 2 = l 9 2 g 7_ 2 _L - 2 = lg

oy = E(Y-Y) 4( 2-1.5)° + 4(‘ 1.5)° + 4(4 1.5)° = Z

We now have ci + 03 = %- %2 = %%-which verifies the above statement that

the variance of the sum of two independent random variables is the sum of
the variances.

2
]

Exercise 3.8. Prove that E[(X+Y)—(i+§) = E(X+Y)2 - (§+?)2. Then

calculate the variance of X+Y in Tllustration 3.3 by using the formula
o = E(X+Y)2 - (§+?)2. The answer should agree with the result obtained
in Illustration 3.8.

Lxercise 3.9. Refer to Illustration 3.3 and the listing of possible

values of X + Y and the probability of each. Instead of X1+Yj list the

products (xi-i)(yj-?) and show that E(xi-i)(yi-i) =0,

Exercise 3.10. Find E(X-X) (Y-Y) for the numerical example used in

Illustration 3.3 by the formula E(XY) - XY which was derived in Illustra-

tion 3.6.
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3.4.2 VARIANCE OF THE SUM OF TWO DEPENDENT RANDOM VARIABLES
The variance of dependent random variables involves covariance which
is defined as follows:

Definition 3.8. The covariance of two random variables, X and Y, is

E(X—i)(Y—?) where E(X) = X and E(Y) = Y. By definition of expected value

E(X-X) (Y-Y) = I P, (X.-X)(Y.-Y)
13 13\ i

where the summation is over all possible values of X and Y.

Symbols commonly used for covariance are ¢ SXY’ and Cov(X,Y).

XY’
Since (X+Y) - (X+Y) = (X-X) + (Y-Y) we can derive a formula for the

variance of X+Y as follows:

02
X+Y

E[(X+Y) - ()'m?)]2

E[(X-X) + (Y-T)]°

E[(x-D)2 + (-T2 + 2(X-%) (Y-9) ]

Then, accordins to Theorem 3.3,

0§+Y = B2 + E(-D)? + 280 (v-D)

and by definition we obtain,

2 2 2
0X+Y = Oy + Oy + ZUXY

Sometimes o is used instead of ci to represent variance. Thus

XX

2
o] = 0 + 0

x+Y = Oxx * 9yy * 294y

For two independent random variables, P = P P,. Therefore

1§ i

(X, -X) (Y,-Y)

E(X-X) (Y-Y) = LI PiP j

gy 3
Write out in longhand, if necessary, and be satisfied that the following

is correct:
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Lz Pin(Xi—X)(Yj—Y) = ?Pi(Xi—X)ng(Yj~Y) =0 (3.7)
ij i ic
which proves that the cavariance Oyy is zero when X and Y are independent.
Notice that in Equation (3.7) IP (X,-X) = E(X-X) and ZPi(Yi—?) = E(Y-Y)

i J
which, for independent random variables, proves that L(X-X) (Y-Y) =
E(X-X) E(Y-Y). When working with independent random variables the following
important theorem is frequently very useful:
Theorem 3.4. The expected value of the product of independent random

variables Uy Upseee, U is the product of their expected values:

k
E(uluz...uk) = E(ul)E(uZ)...E(uk)

3.5 VARIANCE OF AN ESTIMATE

The variance of an estimate from a probability sample depends upon
the method of sampling. We will derive the formula for the variance of x,
the mean of a random sample selected with equal probability, with and
without replacement. Then, the variance of an estimate of the population
total will be derived for sampling with replacement and unequal probability
of selection.
3.5.1 EQUAL PROBABILITY OF SELECTION

The variance of §, the mean of a random sample of n elements selected

with equal probabilities and with replacement from a population of N, is:

N 22
?(Xi-x)

O2
X - 2 i
o where o, = ————r

Var(x) X S

The proof follows:

E[;—E(i)]z. We have shown that E(x) = X. Therefore,

By definition, Var(x)

- - =.2
Var(x) = E(x~-X) . By substitution and algebraic manipulation, we obtain
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Var(x)

]
o]
—

(x,-X)+...+(x -X)
E[ 1 n ]2

n
1 32 - -
== E[ Z(x,-X)" + I 2(xi-x)(x -X)1.
n i=1 i#] J
Applying Theorem 3.3 we now obtain
- 1 n -2 - -
Var(x) = —E-[ ZE(xi—X) + I ZE(xi—X)(xj—X)] (3.8)
n  i=1 i#j

In series form, Equation (3.8) can be written as

Var (%)= 15 [E(xl-i)2 + E(xz—i)2 oot EGgR) (5,70 + B =K (x5-04. 1]
n

Since the sampling is with replacement x, and xj are independent and

i

the expected value of all of the product terms is zero. For example,
E(xl—i)(xz-i) = E(xl—i) E(xz—i) and we know that E(xl-i) and E(xz—i) are

zero. Next, consider E(xl—i)z. We have already shown that xl is a

random variable that can be equal to any one of the population set of

values X XN with equal probability. Therefore

1000
N
L(X,~X)>
w2 _i - 2
E(xl X)© = v ox
The same argument applies to Xys x3, etc. Therefore,
=2 2 2 2 - °§
E(x,-X)" = o, +...+ o, = no, and Equation (3.8) reduces to Var(x) = — .
1 i X X X n

e

i
The mathematics for finding the variance of X when the sampling is

without replacement is the same as sampling with replacement down to and

including Equation (3.8). The expected value of a product term in Equation

(3.8) is not zero because x, and x, are not independent. For example, on

i 3
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the first draw an element has a probability of %-of being seclected, but

on the second draw the probabilitv is conditioned by the fact that the
element selected on the first draw was not replaced. Consider the first
product term in Equation (3.8). To find E(xl—i)(xz-ﬁ) we need to consider
the set of values that (xl—i)(xz—i) could be equal to. Reference to the

following matrix is helpful:

=2 oy oy 3 v 3
(x,-%) (GRG0 el (R (KR
(%, (X, -0) (x,-%)° e (D (X
(X% (x,-) G E,D L D

The random variable (xl—i)(x2—i) has an equal probability of being any of
the products in the above matrix, excent for the squared terms on the main

diagonal. There are N(W-1) such products. Therefore,

—
«Z

N — —
IR (X%

e V(e 3y < AFI S
E(x;=X) (x)=X) N(N-1)

™

According to Equation (1.9) in Chapter 1,

NN _ _ N _
I Z (X,-X)(X,-X) = - (X,-X)
g i 3 K i
i#j i
Hence, N
Z(xi—f()2 52
i X

E(x=X) (xp=X) = - /oy~ = ~ %41

The same evaluation applies to all other product terms in Equation (3.8).
There are n(n-1) product terms in Equation (3.8) and the expected value of

2
o

each is - ﬁ§f .  Thus, Equation (3.8) becomes
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2

n o
=y = 1 2 - -1y &
Var(x) = nz [i E(xi X) n(n-1) o1

Recognizing that E(xi—}_()2 = 02

X and after some easy algebraic operations

the answer as follows is obtained:

A
<N

N-n
-1

:JIQ

Var(x) = (3.9)

=

The factor %E% is called the correction for finite population because it

does not appear when infinite populations are involved or when sampling

with replacement which is equivalent to sampling from an infinite population.
For two characteristics,X and Y, of elements in the same simple random

sample, the covariance of x and ; is given by a formula analogous to

Equation (3.9); namely,
Cov(x,y) = —r — (3.10)

3.5.2 UNEQUAL PROBABILITY OF SELECTION

b3

NN
]
WA T

In Section 3.3 we proved that x”° = R is an unbiased estimate
of the population total. This was for sampling with replacement and
unequal probability of selection. We will now proceed to find the vari-

ance of x” .

N
By definition Var(x”) = E[x"- E(x’)]2 . Let X =2 Xi . Then since
i
E(x") = X, it follows that
x x
;:-L-+...+;E . .
Var(x?) = E[-o———0 - 312 = L gL - )+, 42 - 012
n 2 p p
n 1 n
X x X
L e -vlrrr (-0 -0

n? Py 1#k Pi P
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Applying Theorem 3.3, Var(x”) becomes

X X X
Var(x”) = & [ZE(—: - X)% 4+ © SE(—E - X)X = )] (3.11)

n? Py 1#§ P Py
Notice the similarity of Equations (3.8) and (3.11) and that the steps
leading to these two equations were the same. Again, since the sampling
is with replacement, the expected value of all product terms in Equation
(3.11) is zero. Therefore Lquation (3.11) becomes

n X

var(x?) = 5 1 EGE - 0%
n i pi
X N X
By definition E(——1 - X)2 = 7 pi(_l - X)2
Py 1 i
N X 2
TP, (= - X)
i 1 Pi
Therefore Var(x”’) = = (3.12)

Exercise 3.11. (a) Refer to Exercise 3.1 and compute the variance
of x” for samples of two (that is, n = 2) using Equation (3.12). (b) Then
turn to Illustration 3.7 and compute the variance of x”° from the actual
values of x°. Don't overlook the fact that the values of x” have unequal
probabilities. According to Definition 3.7, the variance of x~ is

10
I P (x{ - X)2 where X = E(x7), xi is one of the 10 possible values of x°,

i)

and P1 is the probability of xi .

3.6 VARIANCE OF A LINEAR COMBINATION

Before presenting a general theorem on the variance of a linear
combination of random variables, a few key variance and covariance rela-
tionships will be given. In the following equations X and Y are random

variables and a, b, ¢, and d are constants:
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Var(X+a) = Var(X)

Var(aX) = aZVar(X)

Var(abe) = aZVar(X)

Cov(X+a,Y+b) = Cov(X,Y)

Cov(aX,bY) = abCov(X,Y)

Cov(aX+b,cY+d) = acCov(X,Y)

Var (X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Var (X+Y+a) = Var(X+Y)

Var(ax+bY) = a’Var(X) + b2Var(Y) + 2abCov(X,Y)

Illustration 3.9. The above relationships are easily verified by

using the theory of expected values. For example,

Var (aX+b) E[ax+b-E(aX+b)]2

E[aX+b—E(aX)—E(b)]2

E[aX-ak (X) ]2

E[a(X-%) ]2

azE(X—i)2 = aZVar(X)

Exercise 3.12. As in Illustration 3.9 use the theory of expected

values to prove that
Cov(aX+b ,cY+d) = acCov(X,Y)

As in Theorem 3.3, let u = a1u1+...+akuk where al,...,ak are constants

and u are random variables. By definition the variance of u is

100 Y
2
Var(u) = E{u-E(u)]
By substitution

2
Var(u) = E[alul+...+akuk—E(a1ul+...+akuk)]

- E[al(ul—ﬁl)+...+Ak(uk-ﬁk)]z where E(u) = 9§
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By squaring the quantity in [ ] and considering the exnected values of
the terms in the series, the followinge result is obtained.
Theorem 3.5. The variance of u, a linear combination of random

variables, is given by the following equation

k 2 2 .

Var(u) = L alo, + I T a.a,0,,
. 171 Lg. 1]
i i#j

2 . . .
where o, is the variance of uy and Oi7 is the covariance of u, and uj.
Theorems 3.3 and 3.5 arc very useful because many estimates from
probability samples are linear combinations of random variables.

Illustration 3.10. Suppose for a srs (simple random sample) that

data have been obtained for two characteristics X and Y, the sample

values being xl,...,xn and v R AT What is the variance of x-v?

1
From the theory and results that have been presented one can proceed
immediately to write tiie answer. From Theorem 3.5 we know that Var(§—§) =
Var(x) + Var(?) —2Cov(;,;). From the sampling specifications we know the

variances of x and vy and the covariance. See Lquations (3.9) and (3.10)

Thus, the followinp result is easilv obtained:

N~n

N-1

)(—rl;) (0)2( + 02 - 20.) (3.13)

Var(x-y) = ( v -

Some readers might be curious about the relationship between covar-

iance and correlation. By definition the correlation between X and Y is

Lo _Cov(X,Y) _ %y
XY G.,0
vVar(X)Var (Y) Y

g, for o in Equation (3.13).

Therefore, one could substitute rXY OX y Xy

Exercise 3.13. 1In a statistical publication suppose you find 87

bushels per acre as the yield of corn in State A and 83 is the estimated

yield for State B. The estimated standard errors are given as 1.5 and
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2.0 bushels, You become interested in the standard error of the differ-
ence in yield between the two States and want to know how larse the
estimated difference is in relation to its standard error. Find the
standard error of the difference. You mav assume that the two vield
estimates are independent because the sample selection in one State was
completely independent of the other. Answer: 2.5.

Iliustration 3.11. No doubt students who are familiar with sampling
have alreadv recognized the application of Theorems 3.3 and 3.5 to several
sampling plans and methods of estimation. For example, for stratified
random sampling, an estimator of the population total is

x* = N.x, ...+ N, x = IN.X
11 e R

. . . . , .th
where Ni is the population number of sampline units in the i stratum
and ;i is the average per sampling unit of characteristic, X, from a sample

. . tl . .

of ni sampling units from the i ' stratum. Accordinge to Theorem 3.3

E(x7) = EIN,x, = SN, E(x,

(x7) $¥g = ENGEG)

If the sampling is such that E(§i) = ii for all strata, x~ is an unbiased

estimate of the population total. Accordinr to Theorem 3.5

Var(x”) = Nz

_ 2
1 Var(xl) +...+ N

K Var(xk) (3.14)
There are no covariance terms in LEquation (3.14) because the sample selection

in one stratum is independent of another stratum. Assumine a srs from ecach

stratum, Equation (3.14) becomes

2 2

N.-n 8] N, -n 5

Var(x) = WiGAh Lol G B
M7 1 K N

2. . , C . th
where oi is the variance of X amons sampling units within the 1 stratum.
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Illustration 3.12. Suppose xi,...,x£ are independent estimates of

-
.

the same quantity,T. That is,E(x{) = T. Let of be the variance of x]

Consider a weighted average of the estimates, namely

-

X7 = vy +...+ wkxk (3.15)

where Zwi = 1. . Then

E(x7) = le(xl) +. ..+ vy E(xk) = T (3.16)
That is, for any set of weights where Zwi = 1 the expected value of x” is
T. How should the weights be chosen?

The variance of x” is

N o 22 2 2
Var(x”) = wlol +...+ vy o)
If we weight the estimates equally,wi = %-and the variance of x” is
1 Zoi
Var(x”) = Yy [T] (3.17)

which is the average variance divided by k. However, it is reasonable to
give more weipht to estimates having low variance. Using differential
calculus we can find the weights which will minimize the variance of x~.
The optimum weights are inversely proportional to the variances of the

estimates. That is, Wy

Q |+
]

As an example, suppose one has two independent unbiased estimates of
the same quantity which originate from two different samples. The optimum

weighting of the two estimates would be

1 . .1 .
2 x, * 2 %)
1 2
1 1
02 ¥ 02
1 2
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As another example, supnose xi,...,xﬂ are the values of X in a sample
of k sampling units selected with equal probability and with replacement.
In this case each x{ is an unbiased estimate of X. If we let w,o= % s, X~

is i, the simple average of the sample values. Notice, as one would expect,
Equation (3.16) reduces to E(x) = X. Also, since each estimate, x{ , is the

same random variable that could be equal to any value in the set Xl,...XN,

it is clear that all of the ci's must be equal to ¢~ = -—~————— . llence,

2
Equation (3.17) reduces to-%— which agrees with the first part of Section

3.5.1.
Xy
Exercise 3.14. If you equate x£ in Equation (3.15) with-;— in
i

Section 3.5.2 and let w, o= %-and k = n, then x“ in Equation (3.15) is the

same as X = —;i in Section 3.5.2. Show that in this case Equation (3.17)
becomes the same as Equation (3.12).
3.7 ESTIMATION OF VARIANCE

All of the variance formulas presented in previous sections have
involved calculations from a population set of values. In practice, we
have data for only a sample. lience, we must consider means of estimating
variances from sample data.
3.7.1 SIMPLE RANDOM SAMPLING

In Section 3.5.1, we found that the variance of the mean of a srs is

g
Var(x) = N1 a (3.18)

where g =



n )

T(x,-x)"

9 i1 1

As an estimator of GX s T

seems like a natural first choice for

consideration. However, when sampliny finite populations, it is custonmnary

to define variance among units of the ponulation as follows:

I(X,-X)°
A S
© N-1
n
“(X.—x)z
S §
2 i . 2
and to use s = ~—;;:f~-— as an estimator of S

. . 2
will become apparent when we find the expected value of s

2 . . , .
The formula for s” can be written in a form that is more convenient

for finding E(sz). Thus,

n _.2
Z(xi—x) sz - n§2
21 B
n-1 n—-1
2 ) () -2
and E(s®) = 1 [ZE(xi) - nE(x7)]
i

We have shown previously that x_‘,L is a random variable that has an equal

probability of being any value in the set Xl""’XN'

N
2
2 i1 2 “in
E(Xi) = N and ZE(xi) = - N
i
2
£X
2, _ n i L=2
lience, E(s”) = -] [ 3 E(x7)]

- =.2
We know, by definition, that 05 = E{(x - X)7 and it is easy to show that

E(x-%)2 = Ex%) - %2

2

X

Therefore, E(§2) = g= + iz

A reason for this

Therefore

as follows:

(3.19)
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By substitution in Equation (3.19) we obtain

2
X
2 n i =2 2
E = —— [ - - o=
(s7) == [ X 071
£ (X, ~%) 2 zxi 5
Dy definition = Tw T 7w~ X and since the specified method of
02 02
- Z _N-n X 2y .. n_(,2 _Nm X
sampling was srs, oL = NO1 o » Ve have E(s”) = 1 [OX 1 o ]
which after simplification is
., 2, _ N 2
EGs™) = {1 %
Note from the above definitions of oi and 82 that
2 _ N 2
S N
Therefore E(sz) = 52
. 2 . 2 . . N-1 .2
Since s 1is an unbiased estimate of S”, we will now substitute N S™ for
oi in Equation (3.18) which gives
2
- N-n S
Var(x) = T (3.20)

Both Equations, (3.18) and (3.20), for the Var(i) give identical results
and both agree with E(E—i)z as a definition of variance. We have shown
that 52 is an unbiased estimate of Sz. Substituting s2 for S2 in Equation

(3.20) we have

2
var(x) = Nonos

; (3.21)

as an estimate of the variance of x. With regard to Equation (3.18),

ﬂii 52 is an unbiased estimate of oi . When Eﬁl 52 is substituted for

oi , Equation (3.21) is obtained.
Since in Equation (3.20), Eﬁﬂ is exactly 1 minus the sampling fraction

2 . \
and s is an unbiased estimate of Sz, there is some advantage to using
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:(xi—?()2
Equation (3.20) and S =‘~~§:I~—— as a definition of variance among
sampling units in the population.

Exercise 3.15. For a small population of 4 clements suppose the

values of X are X, = 2, X, =5, X

1 ) = 3, and X, = 6. Consider simnle

3 4

random samples of size 2. There are six nossible samnles,
. - 2
(a) For each of the six samples calculate x and s”. That is,

find the sampline distribution of x and the samnling

)]

distribution of s-.

(b) Calculate 52, then find Var(x) usine Eauation (3.20).

(c) Calculate the variance among the six values of x and compare
the result with Var(x) ohbtained in (b). The results shoul.l
be the same.

(d) From the sampline distribution of 32 calculate E(sz) and
verify that E(sz) = Sz.

3.7.2 UNEQUAL PROBABILITY OF SELECTION

In Section 3.5.2, we derived a formula for the variance of the

estimator x~ where

x = — (3.22)

The sampling was with unequal selection probabilities and with replacement.

We found that the variance of x” was siven bv

N X
cp (L - x)2
;Pi(Pi X)
Var(x”) = " (3.23)

As a formula for estimating Var(x”) from a sample one mirht be inclined,

as a first puess, to trv a formula of the same form as Equation (3.23) but
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that does not work. Equation (3.23) is a weighted average of the squares
Xg 2

of deviations (5— - X)° which reflects the unequal selection probabilities.

i

If one applied the same weighting system in a formula for estimating

variance from a sample he would in effect be applying the weights twice;

first, in the selection process itself and second, to the sample data.

The unequal probability of selection is already incorporated into the

sample itself.

As in some of the previous discussion, look at the estimator as follows:

Xl X
= 4 e
X «oe b, X,
Py "h 1 n N
- ——— = T where X, 5 —
iy

n n

Each x; is an independent unbiased estimate of the population total. Since
each value of x{ reccives an equal weight in determining x” it appears that

the following formula for estimating Var(x”) might work:

2
var(x’) = ;Sl— (3.24)
n
2(x£-x‘)2
2 i
where 8§ = —
n-1

By following an approach similar to that used in Section 3.7.1, one can

prove that
X

N B
i

[ e A

That is, Equation (3.24) does provide an unbiased estimate of Var(x”) in
Equation (3.23). The proof is left as an exercise.
Exercise 3.16. Reference is made to Exercise 3.1, Illustration 3.7,

and LExercise 3.11. 1In Illustration 3.7 the sampling distribution of x~
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(Sce Equation (3.22)) is piven for samnles of 2 from the nonulation of

4 elements that was piven in Exercise 3.1.
2

(a) Compute var(x”) = %: (Equation (3.24)) for each of the 10
possible samples.

(b) Compute the exnected value of var(x”) and conpare (t with the
result obtained in Exercise 3.11. The results should be the
same. Remermber, when finding the expected value of var(x”),
that the x”'s do not occur with equal frequencv.

3.8 RATIO OF TWO RANDO!l VARIABLES

In sampling theory and practice one frequently encounters estimates

that are ratios of random variables. It was pointed out earlier that
,u E(u) .
L(;) # E () wvhere u and w are random variables. Formulas for the expected

value of a ratio and for the variance of a ratio will now be nresented

without derivation. The formulas are apnroximations:

o p g O

BCH 224 S [ - T (3.25)
W w w iy
2 2
U, . (u,2 r7u gw zouw u W
var() = [ 5+ 5 - ————] (3.26)
W 1 W uw
where u = E(u)
w = E(w)
2 .
o, = E(u-u)
02 = E(w-w)
w
T - -
and 0 = —-- yhere o = E(u-u) (w-w)
uw 9,9 uw

For a discussion of the conditions under which Equations (3.25) and

(3.26) are good approximations, reference is made to llansen, Hurwitz, and
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