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PREFACE

The author has felt that applied courses in sampling should give more

attention to elementary theory of expected values of a random variable.

The theory pertaining to a random variable and to functions of random

variables is the foundation for probability sampling. Interpretations

of the accuracy of estimates from probability sample surveys are predicated

on. among other things. the theory of expected values.

There are many students with career interests in surveys and the

application of probability sampli~g who have very limited backgrounds in

mathematics and statistics. Training in sampling should go beyond simply

learning about sample designs in a descriptive manner. The foundations

in mathematics and probability should be included. It can (1) add much

to the breadth of understanding of bias. random sampling error, components

of error, and other technical concepts; (2) enhance one's ability to make

practical adaptations of sampling principals and correct us~ of formulas;

and (3) make communication with mathematical statisticians easier and more

meaningful.

This monograph is intended as a reference for the convenience of

students in sampling. It attempts to express relevant, introductory

mathematics and probability in the context of sample surveys. Although

some proofs are presented, the emphasis is more on exposition of mathe-

matical language and concepts than,on the mathematics per se and rigorous

proofs. Many problems are given as exercises so a student may test his

interpretation or understanding of the concepts. Most of the mathematics

is elementary. If a formula looks involved. it is probably because it

represents a long sequence of arithmetic operations.

ii



;

Each chapter begins with very simple explanations and ends at a much

more advanced level. Most students with only high school algebra should

have no difficulty with the first parts of each chapter. Students with a

few courses in college mathematics and statistics might review the first

parts of each chapter and spend considerable time studying the latter parts.

In fact, some students might prefer to start with Chapter III and refer to

Chapters I and II only as ~eeded.

Discussion of expected values of random variables, as in Chapter III,

was the original purpose of this monograph. Chapters I and II were added

as background for Chapter III. Chapter IV focuses attention on the dis-

tribution of an estimate which is the basis for comparing the accuracy

of alternative sampling plans as well as a basis for statements about the

accuracy of an estimate from a sample. The content of Chapter IV is

included in books on sampling, but it is important that students hear or

read more than one discussion of the distribution of an estimate, espe-

cially with reference to estimates from actual sample surveys.

The author's interest and experience in training has been primarily

with persons who had begun careers in agricultural surveys. I appreciate

the opportunity, which the Statistical Reporting Service has provided, to

prepare this monograph.

Earl E. Houseman
Statistician
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To work with large amounts of data, an appropriate system of notation

is needed. The notation must identify data by individual elements, and

provide meaningful mathematical expressions for a wide variety of summaries

from individual data. This chapter describes notation and introduces

summation algebra, primarily with reference to data from census and sample

surveys. The purpose is to acquai~t students with notation and summation

rather than to present statistical concepts. Initially some of the expres-

sions might seem complex or abstract, but nothing more than sequences of

operations involving addition, subtraction, multiplication, and division

is involved. Exercises are included so a student may test his interpreta-

tion of different mathematical expressions. Algebraic manipulations are

also discussed and some algebraic exercises are included. To a consider-

able degree, this chapter could be regarded as a manual of exercises for

students who are interested in sampling but are not fully familiar with

the summation symbol,~. Familiarity with -the mathematical language will

make the study of sampling much easier.

1.2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element" will be used in this monograph as a general expression for

a unit that a measurement pertains to. An element might be a farm, a per-

son, a school, a stalk of corn. or an animal. Such units are sometimes

called units of observation or reporting units. Generally, there are

several characteristics or items of information about an element that one

might be interested in.



2

"Ueasurement" or "value" will be used as general terms for the

numerical value of a specified characteristic for an element. This

includes assigned values. For example, the element might be a farm and

the characteristic could be whether wheat is being grown or is not being

grown on a farm. A value of "I" could be assigned to a farm growing wheat

and a value of "a" to a farm not growing wheat. Thus, the "measurement"

or "value" for a farm growing wheat would be "1" and for a farm not grow-

ing wheat the value would be "a."
Typically, a set of measurements of N elements will be expressed as

follows: Xl' X2""'~ where X refers to the characteristic that is

measured and the index (subscript) to the various elements of the popula-

tion (or set). For example, if there are N persons and the characteristic

X is a person's height, then Xl is the height of the first p~rson, etc.

To refer to anyone of elements, not a specific element, a subscript "i"

is used. Thus, Xi (read X sub i) means the value of X for anyone of the

N elements. A common expression would be "Xi is the value of X for the

ith element."

The Greek letter ~ (capital sigma) is generally used to indicate a

sum. When found in an equation, it means "the sum of." For example,

N
~ Xi represents the sum of all values of X from Xl to ~; that is,

i-l

N

i:lXi - Xl + X2 +...+ ~. The lower and upper limits of the index of

summation are shown below and above the summation sign. For example, to

20
specify the sum of X for elements 11 thru 20 one would write ~ Xi'

i-11
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You might also see notation such as "1:Xiwhere i - 1, 2,••• , N" which

indicates there are N elements (or values) in the set indexed by serial

numbers 1 thru N, or for part of a set you might see"1:Xiwhere i = 11,

12, ••• , 20." Generally the index of summation starts loTi th 1; so you will

N
often see a summation written as 1:Xi• That is, only the upper limit of

i
the summation is shown and it is understood that the summation begins with

i-1. Alternatively, when the set of values being summed is clearly under-

stood, the lower and upper limits might not be shown. Thus, it is under-

stood that 1:Xior 1:Xi is the sum of X over all values of the set under
i

consideration. Sometimes a writer will even drop the subscript and use

1:Xfor the sum of all values of X. Usually the simplest notation that is

adequate for the purpose is adopted. In this monograph, there will be

some deliberate variation in notation to familiarize students with various

representations of data.

An average is usually indicated by a "bar" over the symbol. For

example, X (read "X bar," or sometimes "bar X") means the average value of

x. Thus, X = In this case,showing the upper limit, N, of the sum-

mation makes it clear that the sum is being divided by the number of elements
}.;X

iHowever, ~and X is the average of all elements. would also be inter-

preted as the average of all values of X unless there is an indication to

the contrary.

Do not_~~_stu~mathematics without pencil and paper. Whenever

the shorthand is not clear, try writing it out in long form. This will

often reduce any ambiguity and save time.
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Here are some examples of mathematical shorthand:

(1) Sum of the reciprocals of X

(2) Sum of the differences between
Xi and -a constant.C

(3) Sum of the deviations of Xi
from the average of X

(4) Sum of the absolute values ~f
the ~ifferences between Xi
and X. (Absolute value.
indicated by the vertical
lines. means the positive
value of the difference)

N •
r (Xi-C)-(Xl-C)+(X2-C)+ •••+(~-C)

i-I

N
r(Xi-X)-(Xl-X)+(X2-X)+ •••+(~-X)
i

(5)

(6)

Sum of the squares of Xi

Sum of squares of the
deviations of X from X

rx2 _ X2 +
i 1

r(X _X)2 _
i

(7) Average of the squares of the
deviations of X from X - - 2 - 2(Xl-X) + •••+(~-X)

N

(8) Sum of products of X and Y

(9) Sum of quotients of X
divided by Y

(10) Sum of X divided by the
sum of Y

rXi Xl+X2+···+ ~
-- -rYi Yl+Y2+···+ YN

(11) Sum of the first N digits

(12)

(13)

N
r i - 1+2+3+ •••+ N

i-I

N
r iXi • Xl+2X2+3X3+ •••+ N~

i-I
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Exercise 1.1. You are given a set of four elements having the

following values of X: Xl - 2, X2 - 0, X3 - 5, X4 - 7. To test your

understanding of the summation notation, compute the values of the follow-

ing algebraic expressions:

Expression

4
(1) L (Xi+4)

i-I

(2) 1:2(Xi-1)
;

(3) 2L(Xi-l)

(4) L2Xi-l

(5)
_ LXi
X-- N

(6) LX2
i

(7) L(-X
i
)2

(8) [LXi] 2

(9) 2L(Xi - Xi)

(10) L(X~) - LXi

(11) H (Xi)

(12) L(-I)i(X
i
)

4
(13) L (X2 - 3)

i-l i

Answer

30

20

20

27

3.5

78

78

196

64

64

45

o

66

(14) 66

4
Note: L (3) means find the sum of four 3's

i-I
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Expression (Continued) Answer

(15) 1:(X - X) 0i
1:(X - :{)2 29(16) i

N-l 3

r[x2 - 2XiX + X2] 29(17) i
N-l 3

rx2 _ NX2
29(18) i

N-l 3

Definition 1.1. The variance of X \.ThereX = Xl' X2"'" ~, is

defined in one of two ways:

or

2
a = N

N
I:(X.-X)2

i=l 1-

N-I

The reason for the two definitions will be explained in Chapter III.

The variance formulas provide measures of how much the values of X vary

(deviate) from the average. The square root of the variance of X is

called the standard deviation of X. The central role that the above

definitions of variance and standard deviation play in sampling theory

will. become apparent as you study sampling. The variance of an estimate

from a sample is one of the measures needed to judge the accuracy of the

estimate and to evaluate alternative sarnplinp,designs. Much of the algebra

and notation in this chapter is related to computation of variance. For
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complex sampling plans, variance formulas are com~lex. This chapter

should help make the mathematics used in sarnplinf!;more readable and more

meaningful when it is encountered.

Definition 1.2. "Population" is a statistical term that refers to

a set of elements from which a sample is selected ("Universe" is often

used instead of "Population").

Some examples of populations are farms, retail stores, students,

households, manufacturers, and hospitals. A complete definition of a

population is a detailed specification of the elements that compose it.

Data to be collected also need to be defined. Problems of defining popu-

lations to be surveyed should receive much attention in'courses on.sampling.

From a defined population a sample of elements is selected, information

for each element in the sample is collected, and inferences from the sam-

ple are made about the population. Nearly all populations for sample

surveys are finite so the mathematics and discussion in this monograph

are limited to finite populations.

In the theory of sampling, it is important to distinguish between

data for elements in a sample and data for elements in the entire popula-

tion. Many writers use uppercase letters when referring to the population

and lowercase letters when referring to a sample. Thus Xl' ••• ' ~ would

represent the values of some characteristic X for the N elements of the

population; and Xl' ••• ' xn would represent the values of X in a sample of

n elements. The subscripts in Xl' ••• ' xn simply index the different

elements in a sample and do not correspond to the subscripts in Xl' ••• ' ~

which index the elements of the population. In other words, Xi could be

anyone of the Xi's. Thus,



N
~ Xi
i
--a X

N

n
~ xi
i--ax
n

represents the population mean, and

represents a sample mean

8

In this chapter we will be using only uppercase letters, except for

constants and subscripts, because the major emphasis is on symbolic repre-

sentation of data for a set of elements and on algebra. For this purpose,

it is sufficient to start with data for a set of elements and not be

concerned with whether the data are for a sample of elements or for all

elements in a population.

The letters X, Y, and Z are often used to represent different charac-

teristics (variables) whereas the first letters of the alphabet are commonly

used as constants. There are no fixed rules regarding notation •. For

example, four different variables or characteriRtics might be called Xl'
thIn that case Xli might be used to represent the i value

of the variable Xl'
for their problems.

Exercise 1.2.

Typically, writers adopt notation that is convenient

It is not practical to completely standardize notation.

In the list of expressions in Exercise 1.1 find the
2variance of X, that is, find S. Suppose thAt X4 is 15 instead of 7. How

much is the variance of X changed? Answer: From 9t to 44t .
Exe rcise 1.3.

of X and Y

You are given four elements hAving the following values

Y ••2
I

Y ••3
2

Y a 1
3 Y '"'144
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Find the value of the following expressions:

Expression Answer Expression Answer

(1) I:XiYi 107 (7) I:Xi-I:Yi -6

(2) (I:Xi)(I:Yi) 280 (8) 2 74E(Xi-Yi)

(3) E(Xi-X) (Yi-Y) 37 (9) E (X2_y2) -132i i

(4) EXiYi-NXY 37 (10) EX2_Ey2 -132i i

(5) 1 Xi 1.625 (11) 2 36N I:y [I:(Xi-Yi)]
i

(6) E(Xi-Yi) -6 (12) [EXi]2_[Eyi]2 -204

1.3 FREQUENCY DISTRIBUTIONS

Several elements in a set of N might have the same value for some

characteristic X. For example, many people have the same age. Let Xj
be a particular age and let Nj be the number

(set) of N people who have the age X
j
• Then

of people in a population
K
I:Nj - N where K is the

j-l
number of different ages found in the population. Also ENjXj is the sum

ENjXjof the ages of the N people in the population and --~- represents theENj
average age of the N people. A listing of Xj and Nj is called the

frequency distribution of ~since N
j

is the number of times (frequency)

that the age Xj is found in the population.
thOn the other hand, one could let Xi represent the age of the i

individual in a population of N people. Notice that j was an index of age.

We are now using i as an index of individuals, and the average age would

EX
ibe written as ~

EN X
Note that I:NjXj - EXi and that E~ j

j
The
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choice between these two symbolic representations of the age of people in

the population .is a matter of convenience and purpose.

Exercise 1.4. Suppose there are 20 elements in a set (that is, N ••20)

and that the values of X for the 20.elements are: 4, 8, 3, 7, 8, 8, "3, 3,

7, 2, 8, 4, 8, 8, 3, 7, 8, 10, 3, 8.

(1) List the values of Xj and N
j
, where j is an index of the

values 2, 3, 4, 7, 8, and 10. This is the frequency

distribution of X.

(2) What is K equal to?

Interpret and verify the followinr. by making the calculations indicated:

N K
(3) r X •• r NjXji-I i j-l

(4)
rXi rNjXj = X-- ..

N rNj

r(xi-x)2 - 2
(5)

rNj (Xj -X)..N rN
j

1.4 ALGEBRA

In arithmetic and elementary algebra, the order of the numbers when

addition or multiplication is performed does not affect the results. The

familiar arithmetic laws when extended to algebra involving the summation

symbol lead to the following important rules or theorems:

Rule 1.2 r~~i" arXi where ~ is a constant

Rule 1.3 r(Xi+b) - rXi+Nb where b is constant



E (Xi-X) - E X -EX - EX - NX. By definition, X
i i i i i i

NX - EXi and E (Xi-X) - o.
i i
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If it is not obvious that the above equations are correct, write both

sides of each equation as series and note that the difference between the

two sides is a matter of the order in which the summation (arithmetic) is

performed. Note that the use of parentheses in Rule 1.3 means that b is

contained in the series N times. That is,

N
E (Xi+b) - (Xl+b)+(X2+b)+ •••+(~+b)

i-I

On the basis of Rule 1.1, we can write

N
The expression E b means"sum the value of b,which occurs N times.1I Therefore,

i-I
N
E b • Nb.

i-I
N

Notice that if the expression had been E Xi+b, then b is an amount to add
i

N
to the sum, E Xi •

i
N N

In many equations X will appear; for example, E XXi or E (Xi-X).
i i

Since X is constant with regard to the summation, EXXi - XEXi• Thus,
EX
i

i- ~ Therefore,

N
To work with an expression like E(X

i
+b)2 we must square the quantity

i
in parentheses before summing. Thus,
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L(Xi + b)2 = Z(X~ + 2bXi + b2)
i

= LX~ + E2bXi + Lb2

= EX~ + 2bEXi + Nb2

Rule 1

Rules 2 and 3

Verify this result by using series notation. 2 2Start with (X1+b) + •••+(XN+b) •

It is very important that the ordinary rules of algebra pertaining to

the use of parentheses be observed. Students frequently make errors

because inadequate attention is given to the placement of parentheses or

to the interpretation of parentheses. Until you become familiar with the

above rules, practice translating shorthand to series and series to short-

hand. Study the following examples carefully:

The left-hand side is the sum of
the squares of Xi. The right-hand
side is the square of the sum of Xi.
On the right the parentheses are
necessary. The left side could

2have been written EXi •2 2
(2) ftJ. EXt

N 2-N

(3) 2 LX2 Ey2E(Xi+Yi) ~ +i i

(4) E(X2 + y2) _ EX2 + Ey2
i i i i

(5) LXiYi ~ (LXi) (ni)

Rule 1.2 applies.

A quantity in parentheses must be
squared before taking a sum.

Rule 1.1 applies

The left side is the sum of products.
The right side is the product of
sums •

(6)

N N
(7) La(Xi-b); aEXi - ab

i i



(8)

(9)

(10)

N N
Ea(Xi-b) • aEX - Nabi i i

N N
a[EXi-b] • aEX -ab

i i i
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Exercise 1.5. Prove the following:
In all cases, assume i - 1,2, ••• , N.

(2)
XiYi YiE--· E-X2 Xii

(3) NX2 •
(EXi)2

N

N
(4) E (aXi+bYi+C) - aEXi+bEYi+NC

i-l

(5)

(6)

(7)

Note: Equations (5) and (6) should be (or become)
very familiar equations.

E(X _X)2 _ EX2 _ NX2
i i

E(Xi-X)(Yi-Y) - EXiYi-NXY

X
E (.....! + y ) 2 _ 1- E (X +aY )2

a 1 2 1 ia

(8) Let Y1 - a+bXi, show that Y - a+bX

2 - 2 2and EYi • Na(a+2bX) + b EXi

(9) Assume that Xi - 1 for Nl elements of a set and that Xi • 0

for NO of the elements. The total number of elements in the
Nl NO

set is N - Nl+NO• Let ~ - P and ~ - Q. Prove that

E(Xi-X) 2
N - PQ •



(10) Hint:
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- - 2as [(Xi-X)+(X-d)] • Recall from elementary algebra that

222 -(a+b) = a +2ab+b and think of (Xi-X) as a and of (X-d)

as b~ For what value of d is L(Xi-d)2 a minimum?

1.5 DOUBLE INDEXES AND SW>lMATlON

When there is more than one characteristic for a set of elements,

the different characteristics might be distinguished by using a different

letter for each or by an index. For example, Xi and Yi might represent

the number of acres of wheat planted and the number of acres of wheat
thharvested on the i farm. Or, Xij might be used where i is the index

for the characteristics and j is the index for elements; that is, Xij
thwould be the value of characteristic Xi for the j element. However,

when data on each of several characteristics for a set of elements are

to be processed in the same way, it might not be necessary to use

notation that distinguishes the characteristics. Thus, one might say

L(X
i

-X)2
calculate -------- for all characteristics.N-l

More than one index is needed when the elements are classified accord-

ing to more than one criterion. For example, Xij might represent the value
th thof characteristic X for the j farm in the i county; or Xijk might be

the value of X for the kth household in the jth block in the i
th city.

As another example, suppose the processing of data for farms involves

classification of farms by size and type. We might let Xijk represent

the value of characteristic X for the kth farm in the subset of farms

classified as type j and size i. If Nij is the number of farms classified
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as type j and size i,

Nij~ Xijk
kthen ---N----- = Xij• is the average value of X for

ij

the subset of farms classified as type j and size i.

There are two general kinds of classification--cross classification

and hierarchal or nested classification. Both kinds are often involved

in the same problem. However, we will discuss each separately. An

example of nested classification is farms within counties, counties within

States, and States within regions. Cross classification means that the

data can be arranged in two or more dimensions as illustrated in the next

section.

1.5.1 CROSS CLASSIFICATION

As a specific illustration of cross classification and summation with

two indexes, suppose we are working with the acreages of K crops on a set

of N farms. Let Xij represent the acreage of the ith crop on the jth farm

where i = 1, 2,•••, K and j = 1, 2,•••, N. In this case, the data could

be arranged in a K by N matrix as follows:

Column (j) RowRow (i) total1 j N

1 Xl! Xlj XIN ~ Xljj

i Xi! Xij XiN ~ Xijj
: ... .
: .

K ~l ~j ~N ~ ~jj

Colwnn ~ Xi! ~ Xij t XiN: H Xijtotal i i 1 ij



farms and crop acreages, r
th jwhatever the i crop is.

X could be written as

16

N
The expression r Xij (or r Xij) means the sum of the values of Xij for a

.1 j

fixed value of i. Thus, with reference to the matrix, r Xi.1 is the total
j

of the values of X in the ith row; or, with reference to the example about

Xij would be the total acreage on all farms of
K

Similarly, r Xij (or r Xij) is the column total
i i

th thfor the j column, which in the example is the total for the .1 farm of

the acreages of the K crops under consideration. The sum of all values of
KN
rr Xij or rr Xij.
i.1 i.1

Double summation means the sum of sums. Breaking a double sum into

parts can be an important aid to understandin~ it. Here are two examples:

(1.1)

'-lithreference to the above matrix, Equation (1.1) exnresses the grand total

as the sum of row totals.

(2)
N N

- ~ X1j(Ylj+a) + •••+ ~ ~j(YKj+a)

L~

(1.2)

In Equations (1.1) and (1.2) the -double sum is written as the sum of K

partial sums, that is, one partial sum for each value of i.

Exercise 1.6. (a) Write an equation similar to Equation (1.1) that

expresses the grand total as the sum of column totals. (b) Involved in

Equation (1.2) are KN terms, Xi.1(Y1.1+a) • "lrite these terms in the form 0 f

a matrix.
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The rules given in Section 1.4 also apply to double summation.

Thus ,

Study Equation (1.3) with reference to the matrix called for in Exercise

1.6(b). To fully understand Equation (1.3), you might need to write out

intermediate steps for getting from the left-hand side to the right-hand

side of the equation.

(1. 3)

To simplify notation,

example:

~ Xij = Xi.
j

~ Xij X. j
i

a system of dot notation is commonly used. for

represents

~~ Xij = X ••
ij

The dot in Xi. indicates that an index in addition to i is involved and

X. is interpreted as the sum of the values of X for a fixed value of i.
l'

Similarly, X.
j

is the sum of X for any fixed value of j, and X

a sum over both indexes. As stated above, averages are indicated by use of

a bar. Thus Xi. is the average of Xij for a fixed value of i, namely

N
~ X

ijj=l
N

= X and X
i·

would represent the average of all values of Xij,

H Xij
namely _i_j_~NK

Here is an example of how the dot notation can simplify an algebraic

expression. Suppose one wishes to refer to the sum of the squares of the

row totals in the above matrix. 2This would be written as ~(Xi.) •
i

The sum



- 2of squares of the row means would be L(Xi.) .
i

K N 2corresponding expressions would be L(LXi.1) and
i .1

18

Without the dot notation the
2

It is very

Incidentally, what is the difference between the

important that the parentheses be used correctly.

KN2not the same as LLXi.1i.1

last two expressions?

K N 2
For example, L(LXi.1) is

i j

Using the dot notation, the variance of the row means could be written

as follows:
K
L(Xi.-x . .>2
i

K-l (1.4)

where V stands for variance and V(Xi.) is an expression for the variance of

Xi •• Without the dot notation, or something equivalent to it, a formula

for the variance of the row means would look much more complicated.

Exercise 1. 7. Write an equation, like Equation (1. 4) , for the variance

of the column means.

Exercise 1. 8. Given the following values of Xi.1

j
i

1 2 3 4

1 8 11 9 14

2 10 13 11 14

3 12 15 10 17

------------
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Find the value of the following algebraic expressions:

Expression Answer Expression Answer

(1) 42 (9) 54

(3)

(6) X••

6

78

18

(11)

(10)

(12)

45

12

13.5

12

144
KN
HXo

jij 1

(2)

(5)

(4)

(7) 78
(13) 21

(8)
K - - 2m: (Xi.-X ••)
i

18
(14) 60

Illustration 1.1. To introduce another aspect of notation, refer to

the matrix on Page 15 and suppose that the values of X in row one are to

be multiplied by aI' the values of X in row two by a2, etc. The matrix

would then be

The general term can be written as aiXij because the index of a and the
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index i in Xij are the same. The total of all KN values of aiXij is

KN
~~aiXij. Since ai is constant with respect to summation involving j,

N
we can place a1 ahead of the summation symbol E

j
~a , ~Xi' •
i 1j J

Exercise 1.9. Refer to the matrix of values of Xij in Exercise 1.8.

Assume that a = -1 a = 0, and a3 = 1.1 ' 2

Calculate:

(1)

(2)

(3)

Ha,X ..
ij 1 1J

a.Xi·H 1 J
ij N

2
Ha,X'jij 1 1.

Answer:-296

Show algebraically that:

(4) Ha,X
ijij 1

(5)

(6)

Exercise 1.10. Study the following equation and if necessary write

the summations as series to be satisfied that the equation is correct:

KN
U (aXi .+b Y . j )
ij J 1.

Illustration 1.2.

aUX .. + bUYi.ij 1J ij J

Suppose
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The values of Yij can be arranged in matrix format as follows:

Y11 - Xl! + al+bl+c •••••• Y1N - XlN + al+bN+c

Yij - Xij + ai+bj+c

Notice that ai is a quantity that varies from row to row but is constant

within a row and that bj varies from column to column but is constant

within a column. Applying the rules regarding the summation symbols we

have

= ~Xij + Nai + ~b + Nc
j j

- ~EXij + N~ai + KEbj + KNc
ij i j

Illustration 1.3. We have noted that E(XiYi) does not equal

(~Xi)(EYi)' (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

~EXiYj - (EXi)(EYj) where
ij i j
clear if we write the terms of E~XiYj in matrix format as follows:

ij

i - 1, 2, ••• ,K and j - 1, 2, ••• ,N. This becomes

Row Totals



One could

22

The sum of the terms in each row is shown at the right. The sum of these

totals is Xl LYj +... + ~LY. = (Xl+... + ~)LY, = I.:XiLY,.
J J J

get the same final result by adding the columns first. VerY often inter-

mediate summations are of primary interest.

Exercise 1.11. Verify that LLX,Y, = (LX,)(L:Y.) using the values of
. ij ~ J ~ J

X and Y in Exercise 1.3. In Exercise 1.3 the subscript of X and the sub-
.

script of Y \'lerethe same index. In the expression LT\ Y, that is no longer
i j J

the case.

Exercise 1.12. Prove the following:

(1)

(2)
KN
L:L: ( -)2a, Xi,-X.
ij ~ J 1•

K 2 N 2 K N N
= Eai EXt- + 2Eai Eb.Xj. + KEb~

i j J ~ j J J j J

K N K
I 2 -2

La, LX .. - NL:aiX.
i ~j ~J i ~.

(3)
KN
LLai(Xi,-Xi )(Yi,-Y, )ij J • J~'

K N
L, ai LX •• Y .., ~J ~]~ J -

K
m:a,X, Y

i~~ ..
i

1.5. 2 HIERARCHAL OR NESTED CLASSIFICATION

A double index does not necessarily imply that a meaningful cross

classification of the data can be made. For example, X .. might represent
~J

h 1 f X f h ,th f ' h ,tht e va ue 0 or t e J arm ~n t e ~ county. In this case, j simplv

identifies a farm within a county. There is no correspondence, for example,

between farm number 5 in one county and farm number 5 in another. In fact

the total number of farms varies from county to countv. Suppose there are

K counties and Ni farms in the ith county. The total of X for the ith

county could be expressed as X.~.
Ni
L X". ~J
J

K

In the present case LXi' is
i J

meaningless.
KN,

The total of all values of X is LL:
1

X ••
" ~J1J
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When the classification is nested, the order of the subscripts

(indexes) and the order of the summation symbols from left to right should

be from the highest to lowest order of classification. Thus in the above

example the index for farms was on the right and the summation symbol

KNiinvolving this index is also on the right. In the expression LL Xij'
ij

summation with respect to i cannot take place before summation with regard

to j. On the other hand, when the classification is cross classification

the summations can be performed in either order.
thIn the example of K counties and Ni farms in the i county, and in

similar examples, you may think of the data as being arranged in rows (or

columns) :

••• , XlN
1

~l' ~2' ... '~N
K

Here are two double sums taken apart for inspection:

(1)
KN
LLi(X -x )2
ij ij ..

+ ••• + (1. 5)

values of Xij from the overall mean.

N
Ll(X -x )2 = (X -x )2 +... + (XlN _x ..)2lj .. 11· .
j 1

Equation (1.5) is the sum of squares of the deviations, (Xij-X ••), of all
K

There are LNi values of Xij' and
i



a single index would be sufficient.

x..

24

If there was no interest in identifying the data by counties.

N _ 2
Equation (1.5) would then be ~(Xi-X) •

i

(2) (1. 6)

Nl - 2 - 2 - 2
L (Xlj-Xl.) - (XII-Xl.) +...+ (XlN -Xl.)
j 1

Nl - 2With reference to Equation (1.6) do you recognize ~ (Xlj-Xl.)? It involves
j

only the subset of elements for which i ••1. namely Xll' X12'··· XlN . Note
1

that is the of X in this subset. Nl - 2
Xl' average value Hence, ~ (Xlj-Xl.) is

j
the sum of the squares of the deviations of the XIS in this subset from the

subset mean. The double sum is the sum of K terms and each of the K terms

is a sum of squares for a subset of XIS, the index for the subsets being i.

Exercise 1.13. thLet Xij represent the value of X for the j farm in
ththe i county. Also, let K be the number of counties and Ni be the number

thof farms in the i county. Suppose the values of X are as follows:

Xl! - 3 X12 - 1

X2l - 4 X22 - 6
X3l - a X32 - 5

Find the value of the following expressions:

Expression

K
(1) ~Ni

i

Answer

9



Expression (Continued)

(3) X and X

Answer

27

27

9

10

3

3

8

5 2

25

K N K 2
(8) ~(~iX )2 or ~Xi. 245

i j ij i

- 2~~ (Xij -X •• )
ij

(7)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

3

36

8

8. 2. and 14 for i = 1. 2.
and 3 respectively

24

12

12

12
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Expressions (14) and (15) in Exercise 1.13 are symbolic representations

of the same thing. By definition

Substitution in (14) gives

x
K

, and ENi •••N
i

Also by X,1·

X ••
and -- •••X

N
Therefore

(1. 7)

X~.-- ...
N

K -2
Hence, by substitution, Equation (1.7) becomes ENiXi•

i

Exercise 1.14. Prove the follO\o1ing:

KN. K
(1) 1 Ex2EE Xi.Xi, = i·ij 1 i

(2)

(3)
K __ 2 K 2 2
E~i(Xi.-X •.) •••EN X -NX
i i i i·

Note that this equates (13) and (15) in Exp.rcise 1.13.
The proof is similar to the proof called for in part (5)
of Exercise 1.5.

(4)
KNi 2
EE (aiX., -bi)ij 1J

1.6 THE SQUARE OF A SUM

In statistics, it is often necessary to work algebraically with the

square of a sum. For example,



The sum of all
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The terms in the square of the sum can be written in matrix form as

follows:

The general term in this matrix is XiX
j

where Xi and X
j

come from the same

set of XIS, namely, Xl' ••• ,~. Hence, i and j are indexes of the same set.

Note that the terms along the main diagonal are the squares of the value
2of X and could be written as EXi. That is, on the main diagonal i = j

2and XiXj = XiXi = Xi. The remaining terms are all products of one value

cif X with some other value of X. For these terms the indexes are never

equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as EXiX. where i ; j is used to express the fact that the summa-
i;j J

tion includes all terms where i is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (EXi)2 =

Notice the symmetry of terms above and below the main diagonal:

EX,Xj you might see an equivalent expression 2~ XiX .•
i;j1 i<j J

terms above the main diagonal is Z XiX
j

. Owing to the symmetry, the sum
i<j



of the terms below the main diagonal is the same. Therefore, LXiX. =
i#.1 .1
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Exercise 1.15. Express the terms of [ iX.]2 = [;{1+x2+x3+x4]2 in
i=11

matrix format. Let Xl = 2, X2
and [LXi]2

= 0, X3 = 5, and X4
Show that [EXi]2

7. Compute the values
'1

LX~ + 2 E X.X.
i i<j 1 J

An important result, which we will use in Chapter 3, follmvs from the

fact that
2EX. +
1

E XiXjf#j
(1. 8)

Let Xi = Yi-Y. Substitutinr, (Yi-Y) for Xi in Equation 1.8 we have

[E(yi-y)]2 E(yi-y)2 + L (Y.-Y)(Y.-Y)
i#j 1 .1

a because I(Y.-Y)
1

o. Therefore,

E(yi-y)2 + E (Yi-Y)(Yj-Y) = 0
i#j

It follows that E (Yi-Y)(Y.-Y) = _E(y._y)2
i~j J 1

Exercise 1.16. Consider

(1.9)

E (y.-Y)(y.-Y) =
i#j 1 J

E (YiY. - YY. - YY + y2)
i # j J 1 ,i

I Y.Y, - Y E Y - Y L Y. +
i#j 1 J i#j i i#j J

Do you agree that E y2 ~(N_l)y2? Hith reference to the matrix lavout,
i#j

-2 2Y appears N times but the specification is i # .1 so we do not want to
-2count the N times that Y is on the main diagonal. Try finding the values

of I X. and
i#j 1

E Xj and then show that
i#j
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Hint: Refer to a matrix layout. In ~ Yi how many times does Y1 appear?
i;j

Does Y2 appear the same number of times?

1.7 SUMS OF SQUARES

For various reasons statisticians are interested in components of

variation, that is, measuring the amount of variation attributable to each

of more than one source. This involves computing sums of squares that

correspond to the different sources of variation that are of interest.

We will discuss a simple example of nested classification and a simple

example of cross classification.

1.7.1 NESTED CLASSIFICATION

To be somewhat specific, reference is made to the example of K counties

and Ni
of X

ij

thfarms in the i county. The sum of the squares of the deviations

and X •• can be divided into two parts as shown by the following

formula:
KN K KNi _ 2
EEi(X -x )2 ~ EN (X -x )2 + EE (Xij-Xi.)ij •. i i· ..ij i ij

The quantity on the left-hand side of Equation (1.10) is called the

(1.10)

total sum of squares. In Exercise 1.13, Part (9), the total sum of squares

was 36.
The first quantity on the right-hand side of the equation involves the

squares of (Xi.-X ••),which are deviations of the class means from the over-
all mean. It is called the between class sum of squares or with reference

to the example the between county sum of squares. In Exercise 1.13,
Part (13), the between county sum of squares was computed. The answer was

12.
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The last term is called the within sum of sauares because it involves

deviations within the classes from the class means. It was presented

previously. See Equation (1.6) and the discussion pertaining to it. In

Exercise 1.13, the within class sum of squares was 24, which was calculated

in Part (12). Thus, from Exercise 1.13, we have the total sum of squares,

36, which equals the between, 12, plus the within, 2Lf• This verifies

Equation (1.10).

The proof of Equation 1.10 is easy if one gets started correctly.

Write Xij-X •• = (xij-ii.) +(ii.-i .•). This simple technique of adding and

subtracting Xi. divides the deviation (xij-i •.) into two parts. The proof

proceeds as follows:

KN
Hi(X -i )2i' ij .•

J

- - 2+ (X. -X )]~...

+ 2(xi.-i. )(i. -i ) + (Xi.-x..)2]J ~. ~ •••

oExercise 1.17.

- 2 -
= LL(Xij-X .•) + 2Lh(X ..-X. )(X. -x

.. ~ i'~]~. 1·
~] J

KN
i

_
Shm ...that H (x,j-Xi )(X. -X )~ . ~...

i.1

) + H(\._i .. )2
i.1

and that
K
h N.(X. -x
i ~ ~.

Completion of Exercise 1.17 completes the proof.

Equation (1.10) is written in a form which displays its meaning rather

than in a form that is most useful for computational purposes. For computa-

tion purpopes, the following relationships are commonly used:

Total
KN

i
_

= ~I: (X .. -x
ij ~J
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K )2 rN X2 _NX2Between a::: Wi (Xi.-X •• = i i· ••i i

\-lithin =
KNi - 2 2 -2rr (Xij-Xi.> = HXij-L:N.Xi.
ij i.1 i 1

Ni KNi
K r Xij L:L Xi'

where N "'"L:Ni Xi. =
j . ,and X '"'

ij J
Ni Ni

KNi 2
Notice that the major part of arithmetic reduces to calculating L:L:Xij ,

i.1

example, one could use

d NX-2, an There are variations of this that one might use. For

Exercise 1.18. Show that

A special case that is useful occurs when Ni = 2. The within sum of

squares becomes

XU+Xi2Since X ••• 2 it is easy to show thati·

and

- 212(XiI-Xi.) - 4 (Xil-Xi2)
- 212(XiZ-Xi.) - 4 (Xil-Xi2)

Therefore the within sum of squares is

which is a convenient form for computation.
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1.7.2 C~OSS CLASSIFICATION

Reference is made to the matrix on Page 15 and to Exercise 1.8. The

total sum of squares can be divided into three parts as shown by the

following formula:

KN _ 2
H (Xij-X ••)
ij

K
Nl:(X. -x
i ~.

)
2 N __ 2 KN 2

+ Kl:(X.j-X.•) + EE(Xi,-Xi -x j+X )
ij .1 ••••.1

(1.11)

Turn to Exercise 1.8 and find the total sum of squares and the three

parts. They are:

Sum of Square~

Total

Rows

Columns

Remainder

78

18

54

6

The three parts add to the total which verifies Equation (1.11). In

Exercise 1.8t the sum of squares called remainder was computed directly

(see Part (10) of Exercise 1.8). In practicet the remainder sum of squares

is usually obtained by subtracting the row and column sum of squares from

the total.

Againt the proof of Equation (1.11) is not difficult if one makes the

right start. In this case the deviationt (Xij-X ..) t is divided into three
- -parts by adding and subtracting X. and X j as follows:~..

(X .-X ) = (X. -X ) + (X -X ) + (X -x -x .+X )iJ •. ~., .• j .• ij i· .J •• (1. 12)

Exercise 1.19. Prove Equation (1.11) by squaring both sides of Equa-

tion (1.12) and then doing the summation. The proof is mostly a matter of

showing that the sums of the terms which are products (not squares) are zero.

KN

For examp1et showing that ~:~(Xi.-X.'>(Xij-Xi.-X.j+X") O.
~J
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CHAPTER II. RAt~Dm1 VARIABLES AIm PROBABILITY

2.1 RAt~OOH VARIABLES

The word "random" has a ,..ridevariety of meanings. Its use in such

terms as "random events," "random variable," or "random sample." hm..rever,

implies a random process such that the probahility of an event occurrinr,

is known a priori. To select a random sample of elements from a population,

tables of random numbers are used. There are various ways of using such

tables to make a random selection so any given element will have a specified

probability of being selected.

The theory of probability sampling is founded on the concept of a

random variable which is a variable that, by chance. might equal anyone

of a defined set of values. The value of a random variable on any partic-

ular occasion is detennined by a random process-in such a way that the

chance (probability) of its being equal to any specified value in the set

is known. This is in accord with the definition of a probability sample

which states that every element of the population must have a knm..rnprob-

ability (greater than zero) of being selected. A primary purpose of this

chapter is to present an elementary, minimum introduction or review of

probability as background for the next chapter on expected values of a

random variable. This leads to a theoretical basis for sampling and for

evaluating the accuracy of estimates from a probability-sample survey.

In sampling theory. we usually start with an assumed population of N

elements and a measurement for each element of some characteristic X. A

typical mathematical representation of the N measurements or values is

Xl"'. 'Xi.···'~ where Xi is the value of the characteristic X for the ith

thAssociated with the i element is a probability Pi' which is the

probability of obtaining it when one element is selected at random from the
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set of N. The p. 's will be called sele~tion probabilities. If each
1.

1element has an equal chance of selection, Pi - N. The Pi's need not be

equal, but we will specify that each Pi>O. Uhen referring to the probability

of X being equal to X. we will use P(X,) instead of P,.
1. 1. 1.

'ole need to be aware of a distinction bet\oleenselection probability

and inclusion probability, the latter being the probahili ty of an element

being included in a sample. In this chapter, much of the discussion is

oriented toward selection probabilities because of its relevance to finding

expected values of estimates from samples of various kinds.

Definition 2.1. A random variable is a variahle that can equal any

value Xi' in a defined set, with a probability P(Xi).

\.Jhenan element is selected at ranuom from a pOl1ulation and a measure-

ment of a characteristic of it is made, the value ohtained is a random

variable. As \ole shall see later, if a sample of elements is selected at

random from a population, the sanple average and other quantities calculated

from the sample are random variables.

Illustration 2.1. One of the most familiar examples of a random

variable is the number of dots that happen to be on the top side of a die

when it comes to rest after a toss. This also illustrates the concept of

probability that we are interested in; namely, the relative frequency with

which a particular Qutcome will occur in reference to a defined set of

possible outcones. Uith a die there are six possible outcomes and \ole expect

each to occur with the same frequency, 1/6, assuminp, the die is tossed a

very large or infinite number of times. Implicit in a statement that each

side of a die has a probability of 1/6 of bein~ the top side are sane

assumptions about the physical structure of the die anel the "randomness"

of the toss.
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The additive and multiplicative laws of probability can be stated in

several ways depending upon the context in which they are to be used. In

sampling, our interest is primarily in the outcome of one random selection

or of a series of random selections that yields a probability sample.

Hence, the rules or theorems for the addition or multiplication of prob-

abilities will be stated or discussed only in the context of probability

sampling.

2.2 ADDITION OF PROBABILITIES

Assume a population of N elements and a variable X which has a value
thXi for the i element. That is, we have a set of values of X, namely

Xl"" ,Xi""'~' Let Pl"",Pi"",PN be a set of selection probabilities

where Pi is the probability of selecting the ith element when a random

selection is made. We specify that each Pi must be greater than zero and

N
that ~P. = 1. \fhen an element is selected at random, the probability that. ~~
it is either the ith element or the jth element is Pi + Pj' This addition

rule can be stated more generally. Let P be the sum of the selections

probabilities for the elements in a subset of the N elements. When a random

selection is made from the whole set, P is the probability that the elements

selected is from the subset and l-P is the probability that it is not froms

the subset. With reference to the variable X, let P(Xi) represent the

probability that X equals Xi' Then P(Xi)+P(Xj) represents the probability

that X equals either Xi or Xj; and Ps(X) could be used to represent the

probability that X is equal to one of the values in the subset.

Before adding (or subtracting) probabilities one should determine

whether the events are mutually exclusive and whether all possible events

have been accounted for. Consider two subsets of elements, subset A and
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subset B, of a population of N elements. Suppose one element is selected

at random. What is the probability that the selected element is a member

of either subset A or subset B? Let peA) be the probability that the

selected element is from subset A; that is, peA) is the sum of the selec-

tion probabilities for elements in subset A. PCB) is defined similarly.

If the two subsets are mutually exclusive, which means that no element is

in both subsets, the probability that the element selected is from either

subset A or subset B is peA) + PCB). If some elements are in both subsets,

see Figure 2.1, then event A (which is the selected element being a member

of subset A) and event B (,~hich is the selected element being a member of

subset B) are not mutually exclusive events. Elements included in both

subsets are counted once in peA) and once in PCB). Therefore, we must

subtract P(A,B) from peA) + PCB) where P(A,B) is the sum of the probabilities

for the elements that belong to both subset A and subset B. Thus,

peA or B) = peA) + PCB) - P(A,B)

Figure 2.1

To summarize, the additive law of probability as used above could be

stated as follows: If A and B are subsets of a set of all possible outcomes

that could occur as a result of a random trial or selection, the probability
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that the outcome is in subset A or in subset B is equal to the probability

that the outcome is in A plus the probability that it is in n minus the

probability that it is in both A and B.

The additive law of probability extends without difficulty to three

or more subsets. Draw a figure like Figure 2.1 with three subsets so that

some points are common to all three subsets •• Observe that the additive

law extends to three subsets as follows:

P(A or B or C)=P(A)+P(B)+P(C)-P(A,B)-P(A,C)-P(B,C)+P(A,B,C)

As a case for further discussion purposes, assume a population of N

elements and two criteria for classification. A two-way classification of

the elements could be displayed in the format of Table 2.1.

Table 2.l--A two-way classification of N elements

X class
Y class

1 j s
Total

---_._- --------_._----~._--------------- -----
1

i

t

Total

Ntl ,Ptl

N.l

••• N j ,P .
t t]

N.j

••• N1 s ,P Is

••• N ,Pts ts

N.s

Ni ,P.. ~.

N ,P
t· t·

N,P=l

The columns represent a classification of the elements in terms of criterion

X; the rows represent a classification in terms of criterion Y; Nij is the

number of elements in X class j and Y class i; and Pij is the sum of the
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selection probabilities for the elements in X class j and Y class 1. Any

one of the N elements can be classified in one and only one of the t times

s cells.

Suppose one element froM the population of N is selected. According

to the additive law of probability we can state that

L:P .. = P is the probability that the element selected is from
i 1J ..i

X cl ass j, and

IP .. = p. is the probability that the element selected is from
j 1J l'

Y cl ass i, \vhere

P .. is the r rob ability that the element selected is from
1J

(belongs to both) X class j and Y class i.

The probabilities P . and p. are called marginal probabilities .
• J l'

The probability that one randomly selected element is from X class

j or from Y-class i is P . + p. - p .. , (The answer is not P'j + p .
. J l' 1J 1 •

in P . + p. there are N.. elencnts in X class j and Y class i that are
'J l' 1J

If the probabilities of selection are equal, ~i'. 1

and p.
l'

N.
l'

N

N .
-'-1-

N

_I_I_l~~t:.~a_t_~~~2_.2_.Suppose there are 5,000 students in a university.

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living

in dornitory A. From a list of the 5,000 students, one student is selected

at random. Assuming each student had an equal chance of selection, the

probability that the selected student is a freshman is ;~6~' that he is a

1 . 1400 d 1 h .. 1 f h h i 1600soplomore 1S 5000 ,an tlat e 15 e1tler a res man or a sop omore s 5000 +
1400
5000 Also, the probability that the selected student lives in dormitory A
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500is 5000' But t \.,hatis the probability that the selected student is either

a freshman or lives in dormitory A? The question involves two classifica-

tions: one pertainin~ to the student's class and the other to where the

student lives. The information given about the 5000 students could be

arranged as follows:

Class
Dormitory

A

Other

Freshmen Sophomores Others :
Total

500

4500
------ ------------------------ -------

Total 1600 1400 2000 5000... .------- ------------_.--------- -------

From the above format t one can readily ohserve that the ans\.;rerto the ques-

tion depends upon how many freshmen live in dormitory A. If the problem

had stated that 200 freshmen live in dormitory At the answer \vould have
1600 500 200

been 5000 + 5000 - 5000 .

Statements about probability need to be made and interpreted with

great care. For examplet it is not correct to say that a student has a

probability of 0.1 of living in dormitory A simply because 500 students out

of 5000 live in A. Unless students are assiRned to dormitories by a random

process with known probabilities there is no basis for stating a student's

probability of living in (being assigned to) dormitory A. We are consider-

ing the outcome of a random selection.

Exercise 2.1. Suppose one has the following information about a

population of 1000 farms:
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600 produce corn

500 produce soybeans

300 produce wheat

100 produce \.....heat and corn

200 have one or more cows

all farms that have cm .....s also produce corn

200 farms do not produce any 'crops

One farm is selected at random with equal probability from the list

of 1000. Hhat is the probability that the selected farm,

(a) produces corn? Ans'wer : O. 6

(b) does not produce wheat?

(c) produces corn but no \.....heat? Ans\ver: f)" ')

(d) produces corn or wheat but not both?

(e) has no cows? Ans\,er: 0.8

(f) produces corn or soybeans?

(g) produces corn and has no cows? AnSH'er : f) • 4

(h) produces pi ther corn, cm .....s, or bot:!?

(i) does not produce corn or wheat?

One of the above ~uestions cannot be answered.

Exercise 2.2. Assume .:1 population of 10 elements and selection

probabilities as follm .....s:

Element X. P i Elenent X. P.
l l l----- -------

1 2 .ilS 6 11 .15

2 7 • LO 7 2 .20

J 12 • ,') r) 3 8 .05

4 0 .()2 9 h .05

5 8 .20 10 3 .10
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One element is selected at random with probability Pi.

Find:

(a) P(X-2),. the probability that X D 2.

(b) P(X>lO), the probability that X is greater than 10.

(c) P(X~2), the probability that X is equal to or less than 2.

(d) P(3<X>10), the probability that X is greater than 3 and less
than 10

(e) P(X~3 or X~lO), the probability that X is either equal to or less
than 3 or is equal to or greater than 10.

Note: The answer to (d) and the answer to (e) should add to 1.

So far, we have been discussing the probability of an event occurring as

a result of a single random selection. When more than one random selection

occurs simultaneously or in succession the multiplicative law of prob-

ability is useful.

2.3 ~ruLTIPLICATION OF PROBABILITIES

Assume a population of N elements and selection probabilities
N

PI' ••• ,Pi'··· ,PN• Each Pi is greater than zero and LPi a 1. Suppose
i

two elements are selected but before the second selection is made the

first element selected is returned to the population. In this case the

outcome of the first selection does not change the selection probabilities

for the second selection. The two selections (events) are independent.
th thThe probability of selecting the i element first and the j element

second is, PiPj, the product of the selection probabilities Pi and Pj.

If a selected element is not returned to the population before the next

selection is made, the selection probabilities for the next selection are

changed. The selections are dependent.
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The multiplicative law of probability, for two independent events

A and B, states that the joint probability of A and B happening in the

order A,B is equal to the probability that A happens times the prob-

ability that B happens. In equation form, P(AB) = P(A)P(B). For the

order B,A, P(BA) = P(B)P(A) and we note that P(AB) = P(BA). Remember,

independence means that the probability of n happening is not affected

by the occurrence of A and vice versa. The multiplicative law extends

to any number of independent events. Thus, P(ABC) = P(A)P(B)P(C).

For two dependent events A and B, the multiplicative law states that

the joint probability of A and B happening in the order A,B is equal to

the probability of A happening times the probability that B happens under

the condition that A has already happened. In equat ion form P (AB) =

P(A)P(BIA); or for the order B,A we have P(BA) = P(B)P(AIB). The vertical

bar can usually be translated as "given" or "given that." The notation on

the left of the bar refers to the event under consideration and the nota-

tion on the right to a condition under which the event can take place.

p(BI A) is called conditional probability and could be read "the prob-

ability of B, given that A has already happened," or simply "the prob-

ability of B given A." When the events are independent,P(BIA) = PCB);

that is, the conditional probability of B occurring is the same as the

unconditional probability of B. Extending the multiplication rule to a

series of three events A,B,C occurring in that order, we have P(ABC) =

P(A)p(BIA)p(CIAB) where P(C!AB) is the probability of C occurrin~ given

that A and B have already occurred.

2.4 SAMPLING WITH REPLACEMENT

When a sample is drawn and each selected element is returned to the

population before the next selection is made, the method of sampling is
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called "sampling with replacement." In this case. the outcome of one

selection does not change the selection probabilities for another

selection.

Suppose a sample of n elements is selected with replacement. Let the

values of X in the sample be xl.x2' .•••xn where xl is the value of X

obtained on the first selection. x2 the value obtained on the second

selection, etc. Notice that xl is a random variable that could be equal

to any value in the population set of values XI.X2 ••.••~. and the prob-

ability that Xl equals Xi is Pi' The same statement applies to x2• etc.

Since the selections are independent. the probability of getting a sample

of n in a particular order is the product of the selection probabilities

namely. p(xl)P(x2) •••p(xn) where p(xl) is the Pi for the element selected

on the first draw. p(x2) is the Pi for the ~lement selected on the second

draw. etc.

Illustration 2.3. As an illustration. consider a sample of two

elements selected with equal probability and with replacement from a popu-

lation of four elements. Suppose the values of some characteristic X for

the four elements are Xl' X2• X3, and X4• There are 16 possibilities:

Xl,Xl X2,Xl X3,Xl X4,Xl

Xl,X2 X2,X2 X3,X2 X4,X2

xI,X3 X2,X3 X3 ,X3 X4·X3

Xl,X4 X2,X4 X3'X4 X4,X4

In this illustration p(xl) is always equal 1 p(x2) is 1to '4 and always '4 .

Hence each of the 16 possibilities has a probability of (1.) (1.) 1
:-4 4 16 •



44

Each of tne 16 possibilities is a different permutation that could

be regarded as a separate sample. However, in practice ~s we are not

concerned about which element was selected first or second) it is more

logical to disregard the order of selection. Hence, as possible samples

and the probability of each occurring, we have:

Sample Probability Sample Probability

Xl,Xl 1/16 X2,X3 1/8

Xl'X2 1/8 X2'X4 1/8

Xl'X3 1/8 X3'X3 1/16

xl,X4 1/8 X3'X4 1/8

X2,X2 1/16 X4,X4 1/16

Note that the sum of the probabilities is 1. That must always be the

case if all possible samples have been listed with the correct prob-

abilities. Also note that, since the probability (relative frequency

of occurrence) of each sample is known, the average for each sample is

a random variable. In other words, there were 10 possible samples, and

anyone of 10 possible sample averages could have occurred with the

probability indicated. This is a simple illustration of the fact that

the sample average satisfies the definition of a random variable. As

the theory of sampling unfolds, we will be examining the properties of

a sample average that exist as a result of its being a random variable.

Exercise 2.3. With reference to Illustration 2.3, suppose the
1 1probabilities of selection were Pl = 4' P2 = 8' P3

Find the probability of each of the ten samples. Remember the sampling

is with replacement. Check your results by adding the 10 probabilities.
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The sum should be 1. Partial ans~"er: For the sample composed of elements

2 and 4 the probability is (i)(t) + (t)(i) = i6.
2.5 SAMPLING HITIIOUT REPLACEMENT

When a selected element is not returned to the population before the

next selection is made, the sampling method is called sampling without

replacement. In this case. the selection probabilities change from one

draw to the next; that is, the selections (events) are dependent.

As above. assume a population of N elements with values of some

characteristic X equal to Xl.X2 •••.•~. Let the selection probabilities

for the first selection be Pl •••• ,Pi ••••PN where each Pi>O and LPi = 1.

Suppose three elements are selected without replacement. Let xl' x2• and

x3 be the values of X obtained on the first. second: and third random

draws. respectively. What is the probability that xl = Xs' x2 = X6• and

x3 = X7? Let P(XS.X6.X7) represent this probability,which is the prob-

abIlity of selecting elements 5, 6. and 7 in that order.

According to the multiplicative probability law for dependent events.

It is clear that P(Xs) = PS' For the second draw the selection prob-

abilities (after element 5 is eliminated) must be adjusted so they add

to 1. Hence. for the second draw the selection probabilities are

PI Pz P3 P4 P6 PN That is. p(x6Ixs)
P6. =I-P • I-P • I-P , I-P • I-P ,... , l-P I-PS 5 5 5 5 N 5

Similarly.
P7

I-P -P •5 6

Therefore. (2.1)



46

P(X6,X5,X7) unless P5 = P6. In general, each permutation of n elements

has a different probability of occurrence unless the Pi's are all equal.

To obtain the exact probability of selecting a sample composed of ele-

ments 5, 6, and 7, one would need to compute the probability for each of

the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual process'of selection, it is not neces-

sary to compute a new set of selection probabilities after each selection

is made. Hake each selection in the same way that the first selection

was made. If an element is selected which has already been drawn, ignore

the random number and continue the same process of random selection

until a new element is drawn.

As indicated by the very brief discussion in this section, the

theory of sampling without replacement and with unequal probability of

selection can be very complex. However, books on sampling present ways

of circumventing the complex problems. In fact, it is practical and

advantageous in many cases to use unequal probability of selection in

sampling. The probability theory for sampling with equal probability

of selection and without replacement is relatively simple and will be

discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible

samples of two when sampling without replacement. I
8'

3 1P3 = 8' and P4 = 4' List the six possible samples and find the prob-

ability of getting each sample. Should the probahillties for the six

samples add to l? Check your results.



47

Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the

probability: (a) that element number 10 is not selected, (b) that ele-

ment number 10 is selected only once, and (c) that element number 10 is

selected twice? As a check, the three probabilities should add to 1.

Why? Find the probability of selecting the combination of elements 10

and 20.

Exercise 2.6. Refer to Exercise 2.5 and change the specification

"with replacement" to "without replacement." Answer the same questions.

Why is the probability of getting the combination of elements 10 and 20

greater than it was in Exercise 2.5?

2.6 SIMPLE RANDOM SAMPLES

In practice, nearly all samples are selected without replacement.

Selection of a random sample of n elements, with equal probability and

without replacement, from a population of N elements is called simple

random sampling (srs). One element must be selected at a time, that is,

n separate random selections are required.

First, the probability of getting a particular combination of n

elements will be discussed. Refer to Equation (2.1) and the discussion
1preceding it. The Pi's are all equal to N for simple random sampling.

1 1 1Therefore, Equation (2.1) becomes P(X5,X6,X7) - (N)(N-l)(N-2). All per-
mutations of the three elements 5, 6, and 7 have the same probability of

occurrence. There are 3! - 6 possible permutations. Therefore, the

probability that the sample is composed of the elements 5, 6, and 7 is
(1) (2) (3)

N (N-l)(N-2) • Any other combination of three elements has the same

probability of occurrence.
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In general, all possible combinations of n elements have the same

chance of selection and any particular combination of n has the following

probability of being selected:

(1) (2) (3) ••• (n)
N(N-l) (N-2)•••(N-n+l)

nl (N-n)!= -~-- N! (2.2)

N!According to a theorem on number of combinations, there are -------n! (N-n) !
possible combinations (samples) of n elements. If each combination of

n elements has the same chance of being the sample selected, the probability

of selecting a specified combination must be the reciprocal of the number

of combinations. This checks with Equation (2.2).

An important feature of srs that will be needed in the chapter on
thexpected values is the fact that the j element of the population is as

thlikely to be selected at the i random draw as any other. A general
thexpression for the probability that the j element of the population is

thselected at the i drawing is

1- -N (2.3)

Let us check Equation 2.3 for i 3. The equation becomes

1= -
N

thThe probability that the j element of the population is selected at the

third draw is equal to the probability that it was not selected at either

the first or second draw times the conditional probability of being

selected at the third draw, given that it was not selected at the first

or second draw. (Remember, the sampling is without replacement). Notice
N-l ththat ~ is the probability that the j element is not selected at the

N-2first draw and N-l is the conditional probability that it was not selected

at the second draw. Therefore, (N~l)(:=i) is the probability that the jth
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element has not been selected prior to the third draw. When the third
thdraw is made, the conditional probability of selecting the j element

1 this N-2. Hence the probability of selecting the j element at the third
N-l N-2 1 1draw is (~)(N-l)(N-2) = N· This verifies Equation (2.3) for i = 3.

To summarize, the general result for any size of sample is that the

jth element in a population has a probability equal to k of being selected

at the ith drawing. It means that xi (the value of X obtained at the ith
1draw) is a random variable that has a probability of N of being equal to

any value of the set Xl' ••.'~.
thWhat probability does the j element have of being included in a

sample of n? 1We have just shown that it has a probability of N of being

selected at the ith drawing. Therefore, any given element of the popula-
1tion has n chances, each equal to N ' of being included in a sample. The

element can be selected at the first draw, ££ the second draw, ••• , or the
thn draw and it cannot be selected twice because the sampling is without

replacement. 1Therefore the probabilities, N for each of the n draws, can
nbe added which gives N as the probability of any given element being

included in the sample.

Illustration 2.4. Suppose one has a list of 1,000 farms which includes

some farms that are out-of-scope (not eligible) for a survey. There is no

way of knowing in advance whether a farm on the list is out-of-scope. A

simple random sample of 200 farms is selected from the list. All 200 farms

are visited but only the ones found to be in scope are included in the

sample. What probability does an in-scope farm have of being in the sam-
pIe? 1Every farm on the list of 1000 farms has a probability equal to 5
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of being in the sample of 200. All in-scope farm~ in the sample of 200

are included in the final sample. Therefore, the answer is ~.

Exercise 2.7. From the following set of 12 values of X a srs of

three elements is to be selected: 2, 10, 5, 8, 1, 15, 7, 8, 13, 4, 6,

and 2. Find P(x~12) and P(3<x<12). Remember that the total possible

number of samples of 3 can readily be obtained by formula. Since every

possible sample of three is equally likely, you can determine which sam-

pIes will have an x<3 or an x~12 without listing all of the numerous
- 3 -P(x~12) = 220 ; P(x~3)

2.7 SOME EXAJWLES OF RESTRICTED Rfu~DOM SN,WLING

possible samples. Answer: 9 -220 ; P(3<x<12) =
208
220·

There are many methods other than srs that will give every element

an equal chance of being in the sample, but some combinations of n ele-

ments do not have a chance of being the sample selected unless srs is

used. thFor example, one miRht take every k element beginning from a

random starting point between 1 and k. This is called systematic sam-

pIing. For a five percent sample k would be 20. The first element for

the sample would be a random number bet~.,eenland 20. If it is 12, then

elements 12, 32, 52, etc., compose the sample. Every element has an
1equal chance, 20 ' of being in the sample, but there are only 20 com-

binations of elements that have a chance of being the sample selected.

Simple random sampling could have given the same sample but it is the

method £f sampling that characterizes a sample and determines how error

due to sampling is to be estimated. One may think of sample design as a

matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the combinations ~vhich
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have a chance of being the sample selected are generally "better" than

many of the combinations that could occur with simple random sampling.

At the same time, important properties that exist for simple random sam-

pIes need to be retained. The key properties of srs will be developed in

the next two chapters.

Another common method of sampling involves classification of all

elements of a population into groups called strata. A sample is selected

fro~ each stratum. Suppose Ni elements of the population are in the ith

stratum and a simple random sample of ni elements is selected from it.

It is clear that every ele-
h niment in the it stratum has a probability equal to ~ of bein~ in the

ni i
sample. If the sampling fraction, ~ ' is the sa~e f~r all

i
every element of the population has an equal chance, namely

This is called stratified random sampling.

being in the sample. Again every element of the population

strata,
ni
N ' of
i

has an equal

chance of selection and of being in the sample selected, but some combi-

nations that could occur when the method is srs cannot occur when

stratified random sampling is used.

So far, our discussion has referred to the selection of individual

elements, which are the units that data pertain to. For sampling purposes

a population must be divided into parts H'hich are called sampling units.

A sample of sampling units is then selected. Sampling units and elements

could be identical. But very often, it is either not possible or not

practical to use individual elements as sampling units. For example,

suppose a sample of .households is needed. A list of households does not

exist but a list of blocks covering the area to be surveyed might be avail-

able. In this case, a sample of blocks might be selected and all households
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within the selected blocks included in the sample. The blocks are the

sampling units and the elements are households. Every element of the

population should belong to one and only one samp lin~ unit so the lis t of

sampling units will account for all elements of the population without

duplication or oMission. Then, the probability of selecting any given

element is the sal'1e as the probability of selecting the sampling unit

that it belongs to.

units located within ISO well-defined blocks. There are several possible

sampling plans. A srs of :~Sblocks could be selected and every dwelling

unit in the selected blocks could be included in the sample. In this

case, the sampling fraction is i and every dwelling unit has a probability

of i of being in the sanple. Is this a srs of dwelling units? No, but

one could describe the sample as a random sample (or a probability sample)

of dvlelling units and statE' that every dwelling unit had an equal chance

of being in the sample. That is, the tenn "simple random sample" would

apply to blocks, not dwelling units. As an alternative sampling plan, if

there were twelve d\"elling units in each of the ISO blocks. a srs of two

dwelling units could be selected from each block. This scheme, which is an

example of stratified random sampling, would also give every dwelling unit

1
a probability e~ual to h of beinr, in the sample.

_Il_l_':I_~~r_Cl.tio_~2~. Suppose that a sample is desired of 100 adults

living in a specified area. A list of adults does not exist, but a list

of 4,000 d\velling uni ts in the area is available. The proposed sampling

plan is to select a srs of 100 dwelling units from th2 list. Then, the

field staff is to visit the sample d\"ellings and list all adults living
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in each. Suppose there are 220 adults living in the 100 dwelling units.

A simple random sample of 100 adults is selected from the list of 220.

Consider the probability that an adult in the population has of being in

the sample of 100 adults.

Parenthetically, we should recognize that the discussion which

follows overlooks important practical problems of definition such as the

definition of a dwelling unit, the definition of an adult, and the defini-

tion of living in a dwelling unit. However, assume the definitions are

clear, that the list of dwelling units is complete, that no dwelling is

on the list more than once, and that no ambiguity exists about whether

an adult lives or does not live in a particular dwelling unit. Incom-

plete definitions often lead to inexact probabilities or ambiguity that

gives difficulty in analyzing or interpreting results. The many practical

problems should be discussed in an applied course on sampling.

It is clear that the probability of a dwelling unit being in the
1sample is 40' Therefore, every person on the list of 220 had a chance

1of 40 of being on the list because, under the specifications, a person

lives in one and only one dwelling unit, and an adult's chance of being

on the list is the same as that of the dwelling unit he lives in.

The second phase of sampling involves selecting a simple random

sample of 100 adults from the list

of an adult being in the sample of

of 220. The conditional probability
100 5100 is 220 = 11' That is, given the

5fact that an adult is on the list of 220, he now has a chance of 11 of

being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected
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follmJing the above specifications, each dwelling unit in the population
Iwould again have a chance of 40 of beinr, in sample; but, the number of

adults listed is not likely to be 220 so the conditional probability at

the second phase depends upon the number of dwellings units in the sample

blocks. Does every adult have the same chance of being in the sample?

Examine the case carefully. An initial impression could be misleadinR.

Every adult in the population has an equal chance of heing listed in the

first phase and every adult listed has an equal chance of beinp, selected

at the second phase. But, in terms of repetition of the whole sampling

plan each person does not have exactly the same chance of being in the

sample of 100. The following exercise will help clarify the situation

and is a good exercise in probability.

Exercise 2.8. Assume a population of 5 d.u. 's (dwelling units) with

the following numbers of adults:

Dwe.lJ}ng Unit No. of Adults--------
1 2

'2 4
3 1

4 2
5 3

A srs of two d.u. 's is selected. A srs of 2 adults is then selected from

a list of all adults in the two d.u. 'so Find the probability that a speci-

fied adult in d.u. No.1 has of being in the sample. Answer: 0.19. Find

the probability that an adult in d.u. No. 2 has of being in the sample.

Does the probability of an adult being in the sample appear to be related

to the number of adults in his d.u.? In what way?
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An alternative is to take a constant fraction of the adults listed

instead of a constant number. For example, the specification might have
1been to select a random sample of 2 of the adults listed in the first

phase. In this case, under repeated application of the sampling speci-

fications, the probability at the second phase does not depend on the

outcome of the first phase and each adult in the population has an equal

chance, 180 ' of being selected in the sample. Notice that

under this plan the number of adults in a sample will vary from sample

to sample; in fact, the number of adults in the sample is a random variable.

For some surveys, interviewing more than one adult in a dwelling unit

is inadvisable. Again, suppose the first phase of sampling is to select

a srs of 100 dwelling units. For the second phase, consider the following:

\fuen an interviewer completes the listing of adults in a sample dwelling,

he is to select one adult, from the list of those living in the dwelling,

at random in accordance with a specified set of instructions. He then

interviews 'the selected adult if available; otherwise, he returns at a

time when the selected adult is available. What probability does an adult

living in the area have of being in the sample? According to the multi-

plication theorem, the answer is P~(D)P(AID) where P~(D) is the probability

of the dwelling unit, in which the adult lives, being in the sample and

p(AID) is the probability of the adult being selected given that his

is the number of adults in the ith dwelling.

More specifically, P~(D) = Zo and p(AID) = ~. '
1

dwelling is in the sample.

where ki
chance, (~O) (~.), of being in a sample

1

number of adults in his dwelling unit.

Thus, an adult's

is inversely proportional to the

Exercise 2.9. Suppose there are five dwelling units and 12 persons

living in the five dwellinR units as follows:
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obtained at the second draw.
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])we1li~.8.J~nit Individuals

1 1, 2

2 3, 4, 5, 6

3 7, 8

4 9

5 10, 11, 12

1. A sample of two dwelling units is selected with equal probability

and without replacement. All individuals in the ~elected dwelling units

are in the sample. lfuat probability does individual number 4 have of being

in the sample? Individual number 9?

2. Suppose from a list of the twelve individuals that one individual

is selected with equal probability. From the selected individual two

items of information are obtained: his age and the value of the dwelling

in which he lives. Let Xl' X2"",XI2 represent the ages of the 12 indi-

viduals and let YI, •.• ,yS represent the values of the five dwelling units.
th IClearly, the probability of selecting the i individual is 12 and there-

1fore P(Xi) == II' Find the five probabilities P(YI),··· ,P(YS), Do you

( == ~ ?agree that P Y3) 12' As a check, LP(Yj) should equal one.

3. Suppose a sample of two individuals is selected with equal prob-

ability and without repl~~etnent. Let Ylj
the first draw and Y2j be the value of Yj
Does P(Ylj) == P(Y2j)? That is, is the probability of Rettinp Yj on the

second draw the same as it was on the first? If the answer is not evident,

refer to Section 2.5.

Exercise 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only
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as an exercise and wi thout consideration of whether it is a good one: A

sample of 10 third-grade classes i~ to be selected. All students in the

10 classes will be included in the sample.

Step 1. Select a srs of 10 school districts.

Step 2. Within each of the 10 school districts, prepare a list

of public schools having a third grade. Then select one

school at random from the list.

Step 3. For each of the 10 schools resulting from Sten 2, list

the third-grade classes and select one class at random.

(If there is only one third-grade class in the school,

it is in the sam~le). This will give a sample of 10 classes.

Describe third-~rade classes in the population which have relatively

small chances of being selected. Define needed notation and write a

mathematical expression representing the probability of a third-grade

class being in the sample.

2.8 TWO-STAGE SArWLING

For various reasons samp1inr, plans often employ two or more stages

of sampling. For example, a sample of counties might be selected, then

within each sanp1e county a sample of farms might be selected.

Units used at the first stage of sampling are usually called primary

sampling units or psu's. The sampling units at the second stage of sam-

pling could be called secondary sanp1inr, units. However, since there has

been frequent reference earlier in this chapter to "elements of a popula-

tion," the sann1ing units at the second stage will be called elements.

In the simple case of two-stage sampling, each element of the popu-

lation is associated with one and only one primary sampling unit. Let i
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be the index for psu's and let j be the index for elements within a psu.

Thus Xij represents the value of some characteristic X for the jth element
thin the i psu. Also, let

M = the total number of psu 's ,

m" = the number of psu's selected for a sample,

Ni the total nuMber of elements in the th andi psu,

ni the number of elements in the sample from the ith psu.

Then,

M
~Ni = N, the total number of elements in the population, and
1

m
Eni = n, the total number of elements in the sample.
i

Now consider the probability of an element bein? selected by a two

step process: (1) Select one psu, and (2) select one element "within the

selected psu. Let,
thPi = the probability of selecting the i psu,

Pjli = the conditional probability of selecting the jth

element in the ith psu given that the ith psu has already

been selected, and

Pij = the overall probability of se1ectinR the jth element in
ththe i psu.

Then,

If the product of the two probabilities, Pi and Pjli' is constant for

every element, then every element of the population has an equal chance of
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being selected. In other words, given a set of selection probabilities
1PI'·.· ,PM for the psu's, one could specify that Pij = N and compute Pjli

1where P'li = NP ,so every element of the population will have an equal
J i

chance of selection.

Exercise 2.11. Refer to Table 2.1. An element is to be selected by

a three-step process as follows: (1) Select one of the Y classes (a row)
Ni.with probability N ' (2) within the selected row select an X class (a

Nijcolumn) with probability N, ,(3) ,•.•ithin the selected cell select an
1..

element with equal probability. Does each element in the population of N

elements have an equal probability of being drawn? What is the probability?

The probability of an element being included in a two-stage sample

is given by

(2.4)
where

Pi = the probability that the ith psu is in the sample

of psu's, and

Pili = the conditional probability which the j element has
thof being in the sample, given that the i psu has

been selected.

The inclusion probability Pfj will be discussed very briefly for three

important cases:

(1) Suppose a random sample of m psu's is selected with equal prob-

ability and without replacement. thThe probability, P ~ , of the i psu
1.

being in the sample is fl = ~ where fl is the sampling fraction for the

first-stage units. In the second stage of sampling assume that, within

each of the m psu's, a constant proportion, f2, of the elements is selected.
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That is, in the ith psu in the sample, a simple random sample of ni ele-

ments out of Ni is selected, the condition being that ni == f2Ni• Hence,

h di' 1 b" .1. f h 'th 1 . I ' th b' .t e con t10na pro &)1 lty 0 t e J e ement in tle 1 psu e1n~ 1n
n.

h 1· P' 1 ft e samp e 1S '1' = ;;~ = 2'J 1 , i

P~j = flf2 which shows that an element's probability of being in the

sample is equal to the product of the sampling fractions at the two stages.

In this case Pij is constant and is the overall samplio~ fraction.

Unless N. is the same for all psu's, the size of the sample,
1

°i f2Ni varies from psu to psu. Also, since the psu's are selected
m [;1

at random the total size of the sample, n = Ln. = f2 INi, is not constant
i 1 1

with regard to repetition of the sampling plan. In practice variation in

the size, n., of the sample from psu to psu mi?ht be very undesirable. If
1

appropriate information is available, it is possible to select psu's with

probabilities that will equalize the sample sizes ni and also keep P;j

constant.

(2)
N
iSuppose one psu is selected wi th probabil itv P, = -N

- 1
This

is commonly known as sa~rlinp, with pos (probability proportional to size).

Within the selected psu, assume that a simple random sample of k elements

is selected. (If any :~. are less than k, consolidations could be made so
. 1

all psu's have an N, greater than k) • Then,1
N. k Ni k kP: 1

Pili and Pij- , = - ,1 N Ni N N. N1

which means that every ele~ent of the population has an equal probability,
kN ' of being included in a sample of k elements.

Extension of this sampling scheme to a sample of rn psu's could

encounter the complications indicated in Section 2.5. However, it was
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stated that means exist for circumventing those complications. Sampling

books l/ discuss this matter quite fully so we will not include it in this

monograph. The point is that one can select m psu's without replacement
Ni thin such a way that m -- is the probability of including the i psu in
N Nithe sample. That is, Pi = m ~. If a random sample of k elements is

selected with equal probability from each of the selected psu's,
kPjli ::N
i

and
Ni k

Pi'j = (m --)(--)N Ni
mk n

:: --::N N

Thus, if the Ni are known exactly for all M psu's in the population,

and if a list of elements in each psu is available, it is possible to

select a two-stage sample of n elements so that k elements for the sample

come from each of m psu's and every element of the population has an equal

chance of being in the sample. In practice, however, one usually finds

one of two situations: (a) there is no information on the number of ele-

ments in the psu's, or (b) the information that does exist is out-of-date.

Nevertheless, out-of-date information on number of elements in the psu's

can be very useful. It is also possible that a measure of size might

exist which will serve, more efficiently, the purposes of sampling.

(3) Suppose that characteristic Y is used as a measure of size. Let

Yi be the value of Y for the th in the population and let P ••
Yii psu i YM

where Y :: 1:Yi • A sample of m psu's is selected in such a way that
Yi

i
P' •• is the probability th has of being in the sample.m -- that the i psui Y

l/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory. Volume I, Chapter 8. John Wiley and Sons. 1953.
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With regard to the second stage of sampling, let f2i be the sampling

f . f 1 i . 1 d l' h' h .th . hract10n or se ect ng a Slmp e ran am samp e Wlt 1n tel psu 10 t e

sample. That is, p:,.
J 1

Then,

P: .
1J

(2.5)

In setting sarnpline specifications one would decide on a fixed value

for P:.. In this context r:. is the overall sampling fraction or propor-
1J 1J .

tion of the population that is to be included in the sample. For example,

if one wanted a 5 percent sample, P:Lj \v'Ouldbe .05. Or, if one knew there

were approximately 50,000 elements in the population and wanted a sample

of about 2,000, he would set P:L1 = .04. Hence, we will let f be the over-

all sampline fraction and set Pi. equal to f. Decisions are also made on
J

the measure of size to be used and on the number, m, of psu's to be selected.

In Equation 2.5, this leaves f2i to be determined. Thus, f2i is computecl

as follows for each psu in the sample:

fY
mY.

1

Use of the sampling fractions f2i at the second stage of sampling will give

every element of the population a probability equal to f of bein~ in the

sample. A sample wherein every elenent of the population has an equal

chance of inclusion is often called a self-weighted sample.



63

CHAPTER III. EXPECTED VALUr.S OF RA..~DOMVARIABLES

3.1 INTRODUCTION

The theory of exnected values of random variables is used exten-

sively in the theory of s!lJ1lplin~;in fact, it is the foundation for

sampling theory. Interpretations of the' accuracy of estimates from

probability samples depend heavily on the theory of expected values.

The definition of a random varlablc Has discussed in the previous

chapter. It is a variable that can take (be equal to) anyone of a

defined set of values uith known probability. Let Xi be the value of X

for the .th element in set of N elements and let p. be the probability]. a
1

that the .th element has of bein~ selected by chance operation1 some so

that p. is knO\Yn a priori. \Jhat is the expected value of X?
1

Q~f~~~~~~~_l~~.The expected value of a random variable X is

N
L P.X. \.,here

i=l 1 1

N
l: P.=l.

i=l 1

The mathematical notation for the expected value

of X is E(X). Hence, bv definition, E(X)
N
:= p.X.

i=l 1 1

Observe that l:PiXi is a weighted average of the values of X, the

weights being the probabilities of selection. "Exoected value" is a

substitute expression for "averar;e value." In other ~lOrds, E means "the

average value of" or "find the average value of" whatever follows E. For

example, E(X2), read "the expected value of x2," refers to the average value

of the squaresof the values that X can equ<ll. That is, by definition,

J:~ 2
L p,X

ii=l ].

If all of the N elements have an equal chance of being selected, all
1values of Pi must equal N because of the requirement that ZP i = 1. In
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this case, E(X) = L N X.

i=l ~
for all ~ elements.

I:Xi --X , which is the simple average of X
N
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III us trat ion 3.l. Assume 12 elements having values of X as follows:-- --~------

Xl = 3 Xs = 5 X9 = 10

X2 = 9 X6 = 3 XlO 3

X3 = 3 X7 = 4 Xu = 8

X4 5 X" = 3 X12 = 4
0

. () 3+9+ ...+4For tins set, E X = 12 = 5, assuming each element has the same

chance of selection. Or, by counting the number of times that each

unique value of X occurs, a frequency distribution of X can be obtained

as follows:
X. N.

_.1_ ---L

3 5

4 2

5 2

S 1

9 1

10 1

where X. is a unique value of X and N. is the number of times X
j

occurs.
J J

We noted in Chapter I that [N. N, LN.X. LXi' and that
LNjXj LXi

X== = --=
J J J LN

j N

Suppose one of the Xj values is selected at random with a probability equal

N. N.
-L=J
LN . ~~

J
What is the expected value of X. ? By

J



N
= k~ X =

N j

E(X
j
) = 5.

definition E(Xj) = kPjXj
that in this illustration

6S

The student may verify

Note that the selection specifica-

tions were equivalent to selecting one of the 12 elements at random with

equal probability.

Incidentally, a frequency distribution and a probability distribution

are very similar.

be:

The probability distribution with reference to X. would
J

l ~

3 5/12

4 2/12

5 2/12

8 1/12

9 1/12

10 1/12

The 12 values. Pi 1
- N ' for the 12 elements are also a probability distri-

bution. This illustration shows two ways of treating the set of 12

elements.

When finding expected values be sure that you understand the defini-

tion of the set of values that the random variable mi~ht equal and the

probabilities involved.

Definiti0l!.H. \fuen X is a random variable. by definition the

expected value of a function of X is

N
E[f(X») = k Pi[f(Xi»)

i=l

Some examples of simple functions of X are: f(X) = aX. f(X) = X2.
2 - 2f(X) • a + bX + cX , and f(X) = (X-X) • For each value. Xi ' in a

defined set there is a corresponding value of f(Xi).
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_I_ll_u_st:.~~t:.i0I!._3_~. Suppose f(X) = L{+3. ilith reference to the set

of 12 elements discussed above, there are 12 values of f(X.) as follows:
J.

f(Xl) (2)(3) + 3 9

f(X2) = (2)(0) + 3 21

Assumin~ p.
J.

f(XI2) = 2(4) + 3 = 11
1N the expe c red value of f (X) 2X+l Houle! be

E(2X+3)
12 1
l: N(2X1.'+ 3)
i

13 (3.1)

In algebraic terms, for f (X) = aX+b, \.,re have

E (aX+b)
N
l: P.(aX.+b) = EPi(aX.) + EPibi=l J. J. J.

E(aX+b) = E(aX) + E(b)

E(b). Therefore,

(3.2)

Since b is constant and [P.
1.

I, EP.b
].

b, which leads to the first

important theorem in expected values.

_T_h_e~r~~_3_._l. The expected value of a constant is equal to the

constant: E(a) = a.

By definition E(~~)

another iMportant theorem:

EP.(aX.)
J. ].

aEP.X .. Since LV,X, = E(X), we have
J. ]. 1. 1.

~he~r_e}TI_3_._2. The expected value of a constant times a variable equals

the constant times the expected value of the variahle: E(aX) = aE(X).

Applying these two theorems to Equation (3.2) He have E(aX+b)

aE(X) + b. Therefore, with reference to Illustration '3. 2, E(2X+3)

2E(X) + 3 = 2(5) + 3 = 13, which is the SAme as the result found in

ECJuation (3.1).



Exercise 3.l. Suppose a random variable X can take any of the------
follO\ving four values with the probabilities indicated:

X 2 X2 5 X3 = 4 X4 = 61
PI 2/6 P2 = 2/6 P3 1/6 P4 1/6

(a) Find E(X) Answer: 4
') 1 that E(X2) 2(b) Find E (X<-) Answe r : 183, Note :F [E(X)]

(c) Find E(X-X) Ans'ver : 0 Note: By definition
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E(X-X)
4
E p. (X.-X)

i=l 1. 1.

(d) - 2 1 definitionFind E(X-X) Answer: 23' :~ote: By

E(X-X)2 =
4
EP.(X.-X)2

i=l 1. 1

Exercise 3.2. From the following set of three values of Y. one--------- 1.

value is to be selected with a probabilitv P ~:
1

Yl -2 Y2 2 Y3 = 4
P~ 1/4 p~ 2/4 P~ 1/41 2 3

(a) Find E(Y) Answer: 11:.2
(b) Find E(l) Ans\ver : 3/16. Note: 1 .,E (1:.)

Y E(Y) -Y
(c) Find E(y_y)2 Answer: 414

3.2 EXPECTED VALUE OF THE SUM OF TWO Rfu~DOH VARIABLES

Ine sum of two or more random variables is also a random variable.

If X and Yare two random variables, the expected value of X + Y is equal

to the expected value of X plus the expected value of Y:E(X+Y) = E(X)+E(Y).

Two numerical illustrations will help clarify the situation.

Illustration 3.3. Consider the two random variables X and Y in

Exercises 3.1 and 3.2:
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Xl 2 PI 2 Y -2 P' I
= 6 I 1 4

X2 5 P2
2 Y2 2 P' 2
(i 2 4

X
3

4 P3
I

Y
3

4 r~ 1- -
6 3 4

X4 6 1'4 I
=

(,

Suppose one element of the first set and one element of the second

set are selected 'vith probabilities as listed above. ,,11ilt is the expected

value of X + Y? The joint probability of get ting . Xl' ilnd Y. is p, p ~ because
J l J

the two selections are independent. lIenee bv def1ni t ion

E(X + Y)
4 3
L L P.P~ (X. +y.)

1=1 j=l l J l J
(3.3)

The possible values of X + Y and the probability of each are as follows:

X + Y P,P: X+ Y P, P:_________ ___ ____.J__L-_ _______ .. ________.. J:..~_

Xl + YI 0 PIP; 2
X

3
+ Y

l 2 p P ~ 1
= 2/. 3 1 24

Xl + Y2 4 PlP2' 4
X

3 + Y2 6 P P ~ 2
24 3 2 24

Xl + Y
3

6 P/3 2
X3 + Y

3 8 p p' 1
24 3 3 24

X
2

+ Y
l 3 P/i 2

\ + Y
l 4 P P ~ 1

24 4 1 24

X2 + Y2 7 Pl2
4 X4 Y2 8 p P ~ 2
24 + 244 2

X2 + Y
3 9 Pl3 2

X4 + Y
3

10 I' P ~ 1= = =24 /. 3 24

As a check the sum of the probabilities rlust be 1 if all possible

sums have been listed and the probahilitv of each has been correctly

determined. Substitutinp the values of Xi + y, and 1'.1': in Eouation (3.3)
J 1 J

we obtain 5.5 as follows for expected value of X + Y:

241(2'4) (0) + (24) (4) + •.. + ('27;) (If) = 5.5
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There-

fore, E(X) + E(Y) = 4 + 1.5

that E(X + Y) = E(X) + E(Y).

5.5 which verifies the earlier statement

Illustration 3.4. Suppose a random sample of t\olO is selected \.,rith

replacement from the population of four elements used in Exercise 3.1.

Let xl be the first value selected and let x2 be the second. Then xl and

x2 are random variables and xl + x2 is a random variable. The possible

values of xl + x2 and the probability of each, P(xl,x2), are listed below.

Notice that each possible order of selection is treated separately.

Xl x2 P(xl,x2) xl+x2 xl ~2 P(xl'xZ) xl+xZ---
Xl Xl 4/36 4 X3 Xl Z/36 6

Xl X2 4/36 7 X3 X2 2/36 9

Xl X3 2/36 6 X3 X3 1/36 8

Xl X4 2/36 8 X X4 1/36 103
X2 Xl 4/36 7 X4 Xl 2/36 8

X2 X2 4/36 10 X4 X2 2/36 11

X2 X3 2/36 9 X4 X3 1/36 10

X2 X4 2/36 11 X4 X4 1/36 12

By definition E(xl + x2) is

442 136(4) + "36(7) + 16(6) + ... + 16(12) 8

In Exercise 3.1 we found E(X) = 4. Since Xl is the same random variable

as X, E(Xl) = 4. Also, x2 is the same random variable as X, and E(x2) = 4.

Therefore, E(Xl) + E(X2) = 8, which verifies that E(xl+x2) = E(Xl) + E(x2).

In general if X and Yare two random variables, where X might equal

Xl'···'~ and Y might equal Yl, .•.,YM, then E(X + Y) = E(X)+E(Y). The



proof is as follows: By definition E(X+Y)
NM
LL Pi.(Xj+Y.) where Pij is
ij J . J
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the probability of getting the sum X, + Y .•and LIPi, 1. The double
1 J. J

summation is over all possible values of Pij(Xi+Yj). According to

the rules for summation we mav write

NM
H p., (X, +Y , )
.. 1J 1 11J .

0.4)

In the first term on the riRht. Xi is constant wi th regard to the summation

over j; and in the second term on the right, Y, is constant with regard
.1

to the summation over i. Therefore, the right-hand sjde of Equation (3.4)

can be written as

N X ~f N
L Xi L P .. + L, Y~ L Piji j 1J J -' i

H
Anll, since L

j
p ..

1.1

N
Pi and I

i
P ..

1J
p. , Equation (3.4) hecomes

.1

NM
H Pi,(X.+Y.)
.. J 11
1J

N M
By definition L XiPi = E(X) and L Y.P.

i i J J

Therefore E (X+Y) = E (X) + E (Y) •

E(Y) •

If the proof is not clear write the values of p., (X.+Yj) in a matrix
1J 1

format. Then, follow the summation mani pulations in the proof.

The above result extends to any number of random variables; that is,

the expected value of a sum of random variables is the sum of the expected

values of each. In fact. there is a very important theorem that applies

to a linear combination of random variables.



71

Theorem 3.3. Let u = alul + •••+ ~uk' where ul, .••,uk are random

variables and al' •.•'~ are constants. Then

or in summation notation

k k
E(u) = E E aiui = E aiE(ui)

i i

The generality of Theorem 3.3 is impressive. For example, with refer-

ence to sampling from a population Xl' ..•' ~, ul might be the value of X

obtained at the first draw, u2 the value obtained at the second draw, etc.

The constants could be weights. Thus, in this case, u would be a weighted
-average of the sample measurements. Or, suppose xl,x2' •.• ,xk are averages

from a random sample for k different age groups. The averages are random

variables and the theorem could be applied to any linear combination of the

averages. In fact ui could be any function of random variables. That is,

the only condition on which the theorem is based is that Uie~ust be a
random variable.

Illustration 3.5. Suppose we want to find the expected value of
2(X + Y) where X and Yare random variables. Before Theorem 3.3 ~an he

applied we must square (X + Y). Thus E(X + y)2 _ E(X2 + 2XY + y2) •

The application of Theorem 3.3 gives E(X + y)2 = E(X)2 + 2E(XY) + E(y)2.

Illustration 3.6. We will now show that

E(X-X)(Y-Y) - E(XY) - XY where E(X) - X and E(Y) = Y
Since (X-X)(Y-Y) - XY - XY - XY + XY we have

E(X-X)(Y-Y) - E(XY-XY-xY+XY)
and application of Theorem 3.3 gives

E(X-X)(Y-Y) - E(XY) - E(XY) - E(YX) + E(XY)



Since X and Yare constant, E(XY)

Therefore, E(X-X)(Y-Y) = E(XY) - XY

X E(Y) XY, E(YX)
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YX, and E(XY) XY.

~_x_e_rC;}_!5~_3_.l.Suppose E(X) 6 and E(Y) 4. Find

(a) E(2X+4Y) Answer: 28

(b) [E(2X)]2 Answe r : 144

(c) IE (Y) Ans\"er: 2

(d) E(SY-X) Answer: 14

Exercise 3.4. Prove the following, assuming E (X)--.-.--
(a) E(X-X) = 0

(b) E (aX-bY) + cE(Y) = aX + (c-b)Y

(c) E [a(X-X) + b(Y-Y)] = 0

(d) 2 E(X2) 2aX 2E(X+a) + + a

(e) E(X-X)2 E(X2) -2- X

X and E(Y) = Y:

(f) E(aX+bY) = 0 for any values of a and b if E(X) = 0 and E(Y) O.

3.3 EXPECTED VALUE OF AN ESTI~~TE

Theorem 3.3 will now be used to find the expected value of the mean

of a simple random sample of n elements selected without replacement from

a population of N elements. The term "simple random sample" implies equal

probability of selection without replacement. The sample average is

x =
n

thwhere x. is the value of X for the i element in the sample. Hithout
1

loss of generality, we can consider the subscript of x as corresponding

h ith d' . h 1 f X b . d h fi dto t e raw; 1.e., Xl 1S t e va ue 0 0 ta1ne on t erst raw,

x2 the value on the second, etc. As each Xi is a random variable, x

is a linear combination of random variables. Therefore, Theorem 3.3

applies and
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In the previous chapter, Section 2.6, we found that any given element of
I ththe population had a chance of N of being selected on the i draw.

IThis means that xi is a random variable that has a probability equal to N

of being equal to any value of the population set Xl"" ,~. Therefore,

Hence, E(x) =

E(xl) = E(x2) =

X+ ••• +X-----= X.
n

= E(x ) = X
n

The fact that E(x)= X is one of the very

important properties of an average from a simple random sample. Inciden-

tally, E(x) = X whether the sampling is with or without replacement.

Definition 3.3. A parameter is a quantity computed from all values

in a population set. The total of X, the average of X, the proportion of

elements for which Xi<A, or any other quantity computed from measurements

including all elements of the population is a parameter. The numerical

value of a parameter is usually unknown but it exists by definition.

Definition 3.4. An estimator is a mathematical formula or rule for

making an estimate from a sample. The formula for a sample average,
l:x

ix = n
is a simple example of an estimator. It provides an estimate of

the parameter X =
l:X

i
N

Definition 3.5. An estimate is unbiased when its expected value

equals the parameter that it is an estimate of. In the above example, x

is an unbiased estimate of X because E(x) = X.

Exercise 3.5. Assume a population of only four elements having values

of X as follows: Xl = 2, X2 = 5, X3 = 4, X4 - 6. For simple random samples

of size 2 show that the estimator Nx provides an unbiased estimate of the

population total, l:Xi = 17. List all six possible samples of two and
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-calculate Nx for each. This Hill r,ive the set of valucs that the random

variable Nx can be equal to. Consider the probahilitv of each of the

possible values of Nx and snm.,rarithmetically that EC'lx) = 17.

A sample of elements from a population is not always selected by

lIsinr,equal probabilities of selection. Samnlin?, \Vith unefjual probability

is complicated when the sa~"lin~ is \Vithout repl~c('men~ so \Ve \ViII limit

our discussion to samplinr ',.,rjthreplacement.

Illustration 3.7. The set of four elements and the associated prob-

abilities used in Exercise 3.1 will serve as an exam"~e of unbiased

estimation ",hen samples of two elements are selected \li th unequal prob-

ability and with replacement.

n

Our estimator of the II0THllation total,

X.
1

2+5+4+6 = 17, will be x i=l Pi
n

The estim,qte x' is a random variable.

Listed be1o", are the set of values that x" can eClual and the probability

of each value occurrin~.

Pos_!:i_~b_~_e__~a_mrles x~ P.
----.L _.1_

xl xl 6 4/36

xl x2 10.5 8/36

xl x3 15 4/36

xl x4 21 4/36

x2 x 15 4/36
2

xl x3 19.5 4/36

x2 x4 25.5 4/36

x3 x3 24 1/36

x3 x 30 2/364

x4 x 36 1/364



Exercise 3.6 • Verify the above values of Xj~ and P. and find the
.1
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By definition E(x~) = LP.xi~'
J _

be 17 because x~ is an unbiased estimate of the population total.

expected value of x~. Your answer should

To put sampling with replacement and u?equal probabilities in a

general setting. assume the population is xl •••••Xj •••••~ and the selec-

tion probabilities are P1"" ,1' .•.•• ,PN• Let xi be the value of X for
.1

the ith element in a sample of n elements and let p. be the probability
J.

which that element had of being selected. Then x

n xi
L

i=l Pi
n

is an unbiased

estimate of the population total. We will now show that E(x~)
N
L: X.

j=l .1

To facilitate comparison of x~ with u in Theorem 3.~. x may be

written as follows:
x 1 xnx = 1(-.-!.) + ... + -(-)

n P1 n Pn

It is clear that 1 and
xi

now a = ui =i n Pi
Therefore,

E (x~) (3.5)

xl
The quantity which is the outcome of the first random selection from

PI
the population, is a random variable that might be equal to anyone of the

X
set of values 1

1'1
,... , , ••• , P

N

xl
The probability that

PI
X.

equals -.J.. is P .•
Pj J

Therefore, by definition

N X.
= L p. (rf)

j J j

N
L X .

.1.i
x.

Since the sampling is \.,ith replacement it is clear that any 1 is
Pi

random variable as

the s:'rn('
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Therefore Equation (3.5) becomes

E (x"')
1 N

= -[ LX.
n.i J

+... +
N
J:: Xj]
j -

Since there are n terms in the series it follm~s that

E (x "')

Exercise 3.7.

N
~ X.u

.i J

xAs a corollary shm~ that the expected value of is
n

equal to the population mean.

By this time, you should be getting familiar with the idea that an

estimate from a probability sample is a random variable. Persons respon-

sible for the design and selection of samples and for making estimates

from samples are concerned about the set of values. and associated

probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The distribution of an estimate generated by prob-

ability sampling is the sampling distribution of the estimate.

The values of X
j
'"and p. in the numerical Illustration 3.7 are an

J

example of a sampling distribution. Statistician~ are primarily inter-

ested in three characteristics of a sampling distribution: (1) the mean

(center) of the samplins distribution in relation to the value of the

parameter heinr, estiwated, (2) a measure of the variation of possible

values of an estimate from the mean of the sampling distribution, and

(3) the shape of the samplin;> distribution. We have been discussing the

first. \.Jhenthe expected value of an estimate equals the parameter being

estimated. we know that the mean of the sampling distribution is equal to

the parameter estimated. But, in practice, values of parameters are

p;enerally not known. To judge the accuracy of an estimate, we need
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information on all three characteristics of the samplinR distribution.

Let us turn now to the generally accepted measure of variation of a random

variable.

3.4 VARIANCE OF A RANDOM VARIABLE

The variance of a random variab1~ ~ is the average value of the squares
- 2of the deviation of X from its mean; that is, the average value of (X-X) •

The square root of the variance is the standard deviation (error) of the

variable.

Definition 3.7. In terms of expected values, the variance of a random

variab1~~ is E(X-X)2 where E(X) = X. Since X is a random variable,
- 2(X-X) is a random variable and by definition of expected value,

2 2 V2 2Commonly used symbols for variance include: a, aX' , S , Var(X)

~(Xi-X)2
Variance is often defined as N-1

In case Pi

and V(X).

1= N we have the more familiar formula for variance, namely,

This will be discussed

in Section 3.7.

3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES

Two random variables, X and ~ are independent if the joint probability,

Pij, of getting Xi and Yj is equal to (Pi)(Pj) , where Pi is the probability

of selecting Xi from the set of values of ~ and Pj is the probability of
selecting Yj from the set of values of Y. The variance of the sum of two

independent random variables is the sum of the variance of each. That is,
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Illustration 3.8. In [llustration 3.3, X and Y were independent. We

had lbted all possible values of X.+Y. and the probabilitv of each. From
1 .1

that listing \olecan readilv compute the variance of X+Y. f3vdefinition

Substituting in Equation (3.6) we have

2 _ 2 ('1 5 r)2 4 (4 r 5)2 1 ( 5)2 85°X+y - 24 \-.J + 24 -:>. + •..+ -14- 10-5. 12

The variances of X and Yare computed as follows:

(3.6)

2 (-)2 l( 2 1 5)2 2(~ 1 )2 + -4~(4-1.5)2-_419°Y E Y-Y = 4--. + 4 ~-.5

'.J 1 2 + 2 7 + 19 85 l' I . f . 1 b .\,e now lave a a = - - = 12 v111C 1 verl les t le a ove statement tnat
X Y 3 I~

the variance of the sum of tHO independent random variahles is the sum of

the variances.

Exercise 3.8. - - 2 2 - - 2Prove that E[ (X+Y)-(X+Y)] = E(X+Y) - (X+Y) . Then

calculate the variance of X+Y in Illustration 3.1 by usinr, the formula
2 2 - - 20X+Y = E (X+Y) - (X+Y) . The answer should agree \vith the result obtained

in Illustration 3.8.

Exercise 3.9. Refer to Illustration 3.3 and the listin~ of possible

values of X + Y and the probability of each. Instead of Xi+Yj list the

products (Xi-X)(yJ.-Y) and show that E(Xi-X) (y.-Y) = o .
.1

Ex~rcise __3.l0. Find E(X-X) (Y-Y) for the numerical example used in

Illustration 3.3 by the formula E(XY) - XY which was derived in Illustra-

tion 3.6.
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VARIANCE OF THE Sill! OF TWO DEPENDENT RANDOH VARIABLES

The variance of dependent random variables involves covariance which

is defined as follows:

D~f_i_n_i_t~~~_!~.The covariance of two random variables, X and Y, is

E(X-X)(Y-Y) where E(X) = X and E(Y) = Y. By definition of expected value

E(X-X) (Y-Y)

where the sunnnation is over all possible values of X and Y.

Symbols connnonly used for covariance are 0xy' Sxy' and Cov(X,Y).

Since (X+Y) - (X+Y) = (X-X) + (Y-Y) we can derive a formula for the

variance of X+Y as follows:

Oi+y = E[(X+Y) - (X+y)]2
= E[(X-X) + (y_y)]2

= E[(X-X)2 + (y_y)2 + 2(X-X) (Y-Y)]

Then, accordin~ to Theorem 3.3,

and by definition we obtain,

2220X+Y ••Ox + 0Y + 20xy
2Sometimes 0xx is used instead of Ox to represent variance. Thus

For two independent random variables, Pij ••PiPj.

E(X-X)(Y-Y) - rr PiPj (Xi-X)(Yj-Y)
ij

Therefore

Write out in longhand, if necessary, and be satisfied that the following

is correct:



= LP.(Xi-X)EP.(Y .-Y)
. 1 . J 11 J ..

o
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(3.7)

which proves that the covariance OX'{ is zero when X and Yare independent.

Notice that in Equation (3.7) ~P,(Xi-X) = E(X-X) and
i 1

which, for independent randpm variables, proves that

~P.(y.-Y) = E(Y-Y)
j.1 J

E(X-X) (Y-Y) =

E(X-X) E(Y-Y). When working with independent random variables the following

important theorem is frequently very useful:

Theorem 3.4. The expected value of the product of indepe~~ent random

variables ul' uZ, ••• , Uk is the product of their expected values:

E(uluZ"'uk) = E(ul)E(u2)···E(uk)

3.5 VARIANCE OF AN ESTUIATE

The variance of an estimate from a probability sample depends upon

the method of sampling. \~ewill derive the formula for the variance of x,

the mean of a random sample selected with equal probability, with and

without replacement. Then, the variance of an estimate of the population

total will be derived for sampling with replacement and unequal probability

of selection.

3.5.1 EQUAL PROBABILITY OF SELECTION

TIle variance of x, the mean of a random sample of n elements selected

with equal probabilities and with replacement from a population of N, is:

Var(i) 2where Ox N

The proof follows:

By definition, Var(i) = E [i-E(i)] 2. '-Ie have shown that E(i) = X. Therefore,
- - - 2Var(x) = E(x-X). By substitution and algebraic m~nipulation, we obtain



Var(x)
Xl+·· .+X 2

= E[ n - X]
n

(X1-X)+•..+(x -X) 2
= E[ n ]

n

1 n - 2= -- E[ L(X -X) + L L(xi-X)(xj-X)].
n2 i=l i i~j
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Applying Theorem 3.3 we now obtain

1 n - 2Var(x) = -- [ LE(x -X) + L LE(Xi-X)(xj-X)]
n2 i=l i i~j

In.series form, Equation (3.8) can be written as

( 3•8)

Var(x)= ~ [E(Xl-X)2 + E(X2-X)2 + .••+ E(Xl-X) (x2-X) + E(Xl-X)(x3-X)+ •••]
n

Since the samplin~ is with replacement Xi and x
j

are independent and

the expected value of all of the product terms is zero. For example,

E(Xl-X)(X2-X) = E(X1-X) E(X2-X) and we know that E(xl-X) and E(x2-X) are
- 2zero. Next, consider E(x1-X) • We have already shown that Xl is a

random variable that can be equal to anyone of the population set of

values Xl'."'~ with equal probability. Therefore

The same argument applies to x2' x3' etc. Therefore,
n _ 2
L E(x -X)

i=l i

222 -= aX + •••+ aX = noX and Equation (3.8) reduces to Var(x) n

The mathematics for finding the variance of x when the sampling is

without replacement is the same as sampling wi th replacement down to and

including Equation (3.8). The expected value of a product term in Equation

(3.8) is not zero because Xi and xj are not independent. For example, on
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the first drau an element has a probability of ~ of beinr. selected, but

on the second draw the nrobabilitv is conditioned bv the fact that the

element selected on the firs t draw '·1as not replaced. Consider the firs t

product term in Equation (3.8). To find E(X
l
-X)(x

2
-X) He need to consider

the set of values that (Xl-X) (x2-x) could be equal to. Reference to the

folloHing matrix is helpful:

(X
l
-X)2

(X2-X)(Xl-X)

(Xl-X)(X2-X)
- 2(X2-X)

(XI--X) (~-X)

(X2-X)(~-X)

The random variable (Xl-X) (XL-X) has an equal probab ili ty of beinp, any of

the products in the above matrix, except for the squared terms on the Main

diap,onal. There are N(N-l) such products. Therefore,

N N
l: L (X.-X)(X.-X)
i=h 1 2_

N(N-l)

~ccording to Equation (1.9) in Chapter 1,

Hence,

:'J" N
[ L (Xi-X)(x.-X)
i#j J

N
- l: (X

i
-X)2

i

N(N-l)

Tlle same evaluation applies to all other product terms in Equation 0.8).

There are n(n-l) product terms in Equation (3. S) and the expected value of

each is Thus, Equation (3.8) becomes



Var(;')
2

~2 [~ E(Xi-X)2 - n(n-l) ::1]
83

R .. h E(x. --X) 2 = 2 d f 1 b i iecogn1z1ng t at G an a ter some easy a ge ra c operat ons
1 X

the answer as follows is obtained:

N-n
N-l (3.9)

N-nThe factor N-l is called the correction for finite population because it

does not appear when infinite populations are involved or when sampling

with replacement which is equivalent to sampling from an infinite population.

For two characteristicstX and Y, of elements in the same simple random
- -sample, the covariance of x and y is given by a formula analogous to

Equation (3.9); namely,

Cov(x,y) N-n Gxy
N-l n

(3.10)

3.5.2 UNEQUAL PROBABILITY OF SELECTION

In Section 3.3 we proved that x' is an unbiased estimate

of the population total. This was for sampling with replacement and

unequal probability of selection. He \-1illnow proceed to find the vari-

ance of x'

By definition Var(x')

E(x') = X, it follows that

E[x'- E(x,)]2 •
N

Let X = ~ Xi •
i

Then since

Var(x')

Xl x
- +... + n
p Pn

= E[ 1
n

x
X)+ ••• +(--.!!. - X)] 2

Pn
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Applying Theorem 3.3, Var(x~) becomes

0.11)

Notice the similarity of Eouations (3.8) and (3.11) and that the steps

leading to these two equations l-lerethe same. Again, since the samplin~

is \-lithreplacement,the expected value of all product terms in Equation

(3.11) is zero. Therefore Louation (3.11) becones

1 n xi 2Var(x~) = [L E(-- - X) ]
n2 i Pi

By definition

Therefore

N Xi
L P (- - X) 2
i i PiVar(x~) = --------

n
(3.12)

~~~rci~e~ll. (a) Refer to Exercise 3.1 and compute the variance

of x~ for samples of two (that is, n - 2) using Equation (3.12). (b) Then

turn to Illustration 3.7 and compute the variance of x~ from the actual

values of x~. Don't overlook the fact that the values of x~ have unequal

probabilities. According to Definition 3.7, the variance of x~ is

X)2 where X = E(x~), x~ is one of the 10 possible values of x~,
J

the probability of xj •

3.6 VARIANCE OF A LINEAR COMBINATION

Before presenting a general theorem on the variance of a linear

combination of random variables,a few key variance and covariance rela-

tionships will be given. In the following equations X and Yare random

variables and a, b, c, and d are constants:
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Var(X+a) = Var(X)

Var(aX) = a2Var(X)
2Var(aX+b) = a Var(X)

Cov(X+a,Y+b) = Cov(X,Y)

Cov(aX,bY) = abCov(X,Y)

Cov(aX+b,cY+d) = acCov(X,Y)

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Var(X+Y+a) = Var(X+Y)
2 2Var(aX+bY) = a Var(X) + b Var(Y) + 2abCov(X,Y)

Illustration 3.9. The above relationships are easily verified by

usin~ the theory of expected values. For example,

Var(aX+b)

Exercise 3.12.

E[aX+b-E(aX+b)]2

= E[aX+b-E(aX)-E(b)]2
2= E[aX-aE(X)]

- 2= E[a(X-X)]
2 - 2 2= a E(X-X) = a Var(X)

As in Illustration 3.9 use the theory of expected

values to prove that
Cov(aX+b,cY+d) = acCov(X,Y)

As in Theorem 3.3, let u = alul+ •••+~uk where al,· •• ,ak are constants

and ul, .••,uk are random variables. By definition the variance of u is

Var(u) = E[u-E(u)]2

By substitution
2Var(u) = E[alul+ •..+akuk-E(alul+···+akuk)]

- - 2= E[al(ul-ul)+ .••~\.(uk-uk)] where E(ui) - ui
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By squarin~ the quantity in [ ] and considerin~ the exnected values of

the terms in the series. the follmdnl; result is ohtained.

_T_h~ore:~_2.2.. The variance of u, a linear conbination of random

variables, is given by the following equation

Var(u)
k

2 2L: a. o. + I: 2: a. a
j

a ..
i 1 1 i~j 1 1J

2
\o/here a. is the variance o[ u. and a .. is the covariance of u. and U ••

1 1 11 1 )

Theorems 3.3 and 3.5 arc very useful because many estimates from

probabili ty samples are linear combinations of randn!'! variables.

_Il_!.u_s_t_t:.il_~~~n_l._l_O_.Suppose for a srs (simple rrtndom sample) that

data have been obtained [or two characteristics X and Y. the sample

values beinp, xI' ••• 'x and vl, •.• ,v. ~~at is the variance of x-y?
n 'n

From the theory and results that have been presented one can proceed

immediately to write tile ans\o/er. From Theorem 3.5 we know that Var(x-y)

Var(x) + Var(y) -2Cov(;',v). From the samplin~ specifications we knmo/ the

- -variances of x and y and the covariance. See Equations (3.9) and (3.10)

Thus, the followinp, result is easilv ohtained:

- - ~-n 1 2 2 ~ )
Var(x-y) = (N-l)(n) (aX + 0y - ~oxy

Some readers migh t be curious about the relat ionshi p oet\o/een covar-

iance and correlation. By definition the correlation oet\o/een X and Y is

Cov(X,Y)

IVar(X)Var(Y)

Therefore, one could subs ti tute rAI' 0Xoy for 0Xy in E'luat ion (3.13).

(3.13)

Exercise 3.13. In a statistical publication suppose you find 87

bushels per acre as the yield of corn in State A and 83 is the estimated

yield for State B. The estimated standard errors arc p,iven as 1.5 and
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2.0 bushels. You become interested in the st::mdartl error of the differ-

ence in yield between the two States and \~ant to know hO\l 1arr,e the

estimated difference is in relation to its standard error. Find the

standard error of the difference. You may assume that the two Yield

estimates are independent hecause the sample selection in one State '~as

completely independent of the other. Answer: 2.5.

have al ready recognized the application of Theorems 3.3 and 3.5 to several

sar.lplin~ plans and methods of estination. For exanple. for stratified

random sampling. an estimator of the population total is

\~here ;~. is the population nUT'1bl'r of sanplin-:-: units in the ith stratum
I

and x. is the average per s3r'1plinr, unit of characteristic. X, from a sample
I

f Ii . f h' tha n1 samp ng unIts rom tel stratum. Accordinr. to Theoren 3.1

If the sampling is such that E(i
f
) = X. for all strata. x~ is an unhiased

1

estimate of the population total. Accordin~ to Theore~ 3.5

V (~) ,,2 V (-) 2 (-)a r x =.' 1 a r x 1. + ... + Nk Var xk 0.14)

There are no covariance terms in Equation (3.14) because the sample selection

in one strat.UM is indenendent of another stratum. Assul'1inn a srs fror' each

stratum, Equation (3.14) becomes

Var(x')

? .th
,,,here a-;- is the variance of X amonr; samplinr. units wi thin the ~ stratum.

I
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1l~ustr~~~~_l.12. Suppose xl' ••• '~ are independent estimates of
2the same quantity,T. That is, E(xi) = T. Let ai be the variance of xi.

Consider a weighted averap,e of the estimates, namely

\..•here ~w i = 1. Then

(3.15)

That is, for any set of wei~hts where LW = 1 the expected value of x" is
i

T. How should the weights be chosen?

The variance of x" is

V (") 2 2 2 2ar x = wlol +...+ wk ak

= ~ and the variance of x" isIf we wei~lt the estimates

Var{x") = 1-
k

equally, ,..•i
2

La i
[-]

k
(3.17)

which is the average variance divided by k. However, it is reasonable to

give more weip,ht to estimates havin~ low variance. Using differential

calculus we can find the weights which will minimize the variance of x".

The optimum weights are inversely proportional to the variances of the

estimates. That is, Wi 1
ex: -

2
a.
1

As an example, suppose one has two independent unbiased estimates of

the same quantity which originate from t\olDdifferent samples. The optimum

weighting of the two estinates would be
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As another example, suppose xl ••••• ~ are the values of X in a sample

of k sampling units selected \olithequal probability and ,olithreplacement.

In this case each xi is an unbiased estimate of X. 1If we let wi = k ' x'

is x. the simple average of the sample values. Notice, as one would expect.

Equation (3.16) reduces to E(x) a X. Also. since each estimate, x~ • is the
1

which aRrees with the first part of Section

same random variable that could he equal to any value in the set Xl ••••~.
- 21: (Xi-X)

= ~..._----
N

2it is clear that all of the ai's must
2aEquation (3.17) reduces to

n

2be equal to a lIence•

3.5.1.
Xi

Exercise 3.14. If you equate x~ in Equation (3.15) with -- in
------- 1 Pi

1Section 3.5.2 and let wi = ~ and k = n, then x' in Equation (3.15) is the

,same as x
n

in Section 3.5.2. Show that in this case Equation (3.17)

becomes the same as Equation (3.12).

3.7 ESTIMATION OF VARIANCE

All of the variance formulas presented in previous sections have

involved calculations from a population set of values. In practice, 'ole

have data for only a sample. lience. we must consider means of estimatinR

variances from sample data.

3.7.1 SI~WLE RANDOM S~~LING

In Section 3.5.1. we found that the variance of the mean of a srs is

Var(x) N-n- --N-l (3.18)

where

N
I; (X

i
-X)2

2 ia - ----X N



n

2As an estimator of aX

- ?::(x.-x)-
i 1

n seems like a natur~l first choice for

consideration. However, IYhen samplinr> finite populations, it is custoT'1ary

to define variance amonr units of the ponulation as follows:

N - 2I(X.-X)
i 1

N-l

and to use 2
s

n _ 2
i:(x.-x)
• 1
1= ------n-l

?as an estimator of S- A reason for this

will become apparent when we find the expected value of 52 as follows:
2The formula for s can he written in a form that is more convenient

for finding E(s2). Thus,

n _ 2
I(x.-x)
i 12

s n-l

2 -2
LX - nx

i-----n-l

and 1 n 2 -2
= n-l [~E(xi) - nE(x )]

He have shmvn previously that x. is a random variable that has an equal
1

probability of being any value in the set Xl""'~' Therefore

N
and

2nLX.
1

N

Hence,
LX
i
2

2 n -2E(s ) = n-l [~- E(x )] (3.19)

2We know, by definition, that a-x and it is easy to show that

Therefore. E(-x2) = 2 -2a- + X
x



By substitution in Equation (3.19) we ohtain
2!:xi -2

[- - X~
n= --n-l

20-]x
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2
By definition Ox

l:(X _X)2 i:X~
i 1.---=N N

-2X and since the specified method of

2sampling was srs, o-x
N-n
N-l

2Ox 2, we have E(s )n
n 2

n-l [oX
N-n
N-l

which after simplification is

Hote from the above definitions of O~ and S2 that

Therefore

2 N 2
S = i-loX

E(s2) = s2

S· 2 . bi d . f S2 '11 b' N-l S2 for.1.nce s 1S an un ase est1.mate 0 , we W1. now su st1tute N

o~ in Equation (3.18) which gives

Var(x) = N-n
N n

(3.20)

Both Equations, (3.18) and (3.20), for the Var(i) give identical results
- - 2and bo th agree with E (x-X) as a definition of variance. \.Je have shown

that s2 is an unbiased estimate of S2.

(3.20) we have

S b .. 2 f S2 i E iu st1.tut1.ngs or n quat on

var(x) = N-n
N

2s
n

(3.21)

as an estimate of the variance of x.
N-l 2 . b' d . f 2N s 1.San un 1ase est1.mate 0 aX

With regard to Equation (3.18),

When N;l s2 is substituted for

2Ox ' Equation (3.21) is obtained.
N-nSince in Equation (3.20), ~ is exactly 1 minus the sampling fraction

and s2 is an unbiased estimate of s2, there is some advantage to using



2Equation (3.20) and S =
:-:(X._X)2

1

H-l as a definition of variance among
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sampling units in the population.

values of X are Xl = 2, X2 = 5, ;Z3 = 1; and X4 o. Consider simryle

random samples of size Z. There are six nossihle samples.

(a) For each of the six samnles calculate x emu 2
s . That is,

find the samp]in?: distrihution of x and the S.1mpling
')

distribution of s~.
2(b) Calculate S , then find Var(;) usin~ Enu.1tion (3.20).

(c) Calculate the variance amonR the six values of x and compare

the result \"ith Var(x) ohtaincd in (b). The results should

be the same.

(el) From the samplinr distribution of 52 calculate [(s2) and

verify that E(52) = S2.

3.7.2 UNEQUAL PROBABILITY OF SELECTION

In Section 3.5.2, we derived a famula for the v.lriancE'of the

estimator x where

x.
[2-

P.
1x n 0.22)

The samplinR was with uncflllalselection prohabil itips and ",ith replacement.

We found that the variance of x was ~iven bv

:, x.
;:p'(_p2_X)2
. 1 .
1 1

n (3.21)

As a formula for estimatin~ Var(x~) from a sample onp might be inclined,

as a first p:uess, to trY a formula of the same fonn as Eauation (3.23) but
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that does not work. Equation (3.23) is a ,yeighted average of the s<1uares

X. 2
of deviations (----.!. - X) which reflects- the unequal selection probabilities.

p .
.1

If one applied the same weir,hting system in a formula for es timating

variance from a sample he ,,,ould in effect be applying the weights twice;

firstt in the selection process itself and second, to the sample data.

The unequal probability of selection is already incorporated into the

SaT1plc itself.

discussion t look at the estimator as follO\\I's:

xl +... +
n

As in some of the previous

Xl x
-- +... + n

~ Pl Pn
x --------

n

~x
n where x~ =

.1

Each x~ is an independent unbiased estimate of the population total. Since
.1

each value of x: receives an equal WCig!lt in determining x~ it appears that
1.

the fo11owinf, formula for estimating Var(x~) might work:

2svar(x')
n

(3.24 )

where 2s = n-l

By following an approach similar to that used in Section 3.7.lt one can

prove that

2E(s )

That iSt Equation (3.24) does provide an unbiased estimate of Var(x') in

Equation (3.23). The proof is left as an exercise.

~_x_e~_c:.~~_~.J6. Reference is made to Exercise 1.1, Illustration 3.7 t

and Exercise 3.11. In Illustration 3.7 the sampling distribution of x
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(See Equation (3.22» is given for saMnles of 2 from the ponulation of

4 elements that was ~tven in Exercise 3.1.
')

(a) Compute var(x~) = s (Equation (3.24» for each of the 10
n

possible samples.

(0) Conpute the exnected value of var(x~) and conparei.t with the

result obtained in Exercise 3.11. The results should be the

same. ReneMber, \lhen finding the expected value of var(x~),

that the x~' s uo not occur \-lith equal frequencv.

3.8 RATIl) OF TWO RAND01l VARIABLES

In sar.tplinR theory and practice one frequently encounters estimates

that are ratios of r;:mdom vilriables. It '.Jas pointed out earlier that

u E (u)
E(-) f. ----- vrhere u and H ilre random variables. Formulas for the expected

\.J E (v)

VAlue of a ratio and for the variance of a ratio will now be riresented

without derivation. The formulas are approximations:

2a p r; a
E (l!.) u + u [~ u\o!_!-.!!.. ]- ..- -

w -2
\.J \-J W mil

(3.25)

11
Var (--)

\J

20 a auw U \J--:::.--- ]
UH

(3.26 )

where u = £(u)

w t:(w)

2 7
a E(u--;:;)~u

2 ., ( - ) 2a L W-H
\.J

and
a

U\v
Cl =uw a au \V

For a discussion of tlle conditions under which ErJuations (3.25) and

(3.26) are good approximat ions, reference is made to Ilansen, Hunvltz, and
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